

AWS	Lambda	Quick	Start	Guide	

	

Learn	how	to	build	and	deploy	serverless	applications	on	AWS

	

	

	

	

	

	

	

	

Markus	Klems

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

AWS	Lambda	Quick	Start	Guide
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Wilson	D'souza
Acquisition	Editor:	Reshma	Raman
Content	Development	Editor:	Roshan	Kumar
Technical	Editor:	Shweta	Jadhav
Copy	Editor:	Safis	Editing
Project	Coordinator:	Hardik	Bhinde
Proofreader:	Safis	Editing
Indexer:	Aishwarya	Gangawane
Graphics:	Jisha	Chirayil
Production	Coordinator:	Deepika	Naik

First	published:	June	2018

Production	reference:	1290618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78934-019-8

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals
Improve	your	learning	with	Skill	Plans	built	especially	for	you
Get	a	free	eBook	or	video	every	month
Mapt	is	fully	searchable
Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and,	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Markus	Klems	is	a	software	development	and	system	administration	expert	for
scalable,	high-availability,	and	high-performance	software	systems,	such	as	big
data,	mobile,	web	application,	and	Software-as-a-Service	systems.	Within	the
framework	of	his	research	and	development	work	at	TU	Berlin	and	Karlsruhe
Institute	of	Technology	(KIT),	Markus	has	gained	in-depth	knowledge	and
experience	of	complex	and	large-scale	IT	systems.	He	has	been	working	with
Amazon	Web	Services	(AWS)	since	2008	and	is	particularly	excited	about
serverless	computing	and	serverless	microservice	architectures.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

	

Title	Page

	

Copyright	and	Credits

AWS	Lambda	Quick	Start	Guide

	

Packt	Upsell

Why	subscribe?

	

PacktPub.com

	

Contributors

About	the	author

	

Packt	is	searching	for	authors	like	you

	

Preface

What	this	book	covers

	

What	you	need	for	this	book

	

Who	this	book	is	for

	

To	get	the	most	out	of	this	book

Download	the	example	code	files

	

Download	the	color	images

	

Conventions	used

	

Get	in	touch

Reviews

	

Bibliography

	

1.	 Getting	Started	with	AWS

Installation	and	setup	guide

Installing	the	Serverless	framework

	

Introduction	to	AWS

Cloud	service	pricing

Pricing	example

	

AWS	Management	Console

Regions

	

AWS	Lambda

	

AWS	API	Gateway

	

Summary

	

2.	 Exploring	the	Serverless	Framework

The	Serverless	framework

	

Creating	a	serverless	project

	

Programming	a	Lambda	function	with	Node.js

	

Testing	and	debugging	Lambda	functions

Testing	the	API	using	Postman

	

Testing	and	debugging	via	the	AWS	Management	Console

	

Summary

	

3.	 Building	a	Serverless	Application

Building	a	stateless	serverless	web	application	backend

Changing	the	file	structure

	

Creating	more	functions

	

Creating	a	stateful	serverless	backend	with	DynamoDB

	

Creating	a	web	client

	

Deploying	a	serverless	frontend	on	CloudFront

	

Summary

	

4.	 Programming	AWS	Lambda	with	Java

Deploying	and	Testing	AWS	Lambda	Functions

	

Lambda	Function	with	S3	Event	Input

Creating	a	Simple	Serverless	Java	Project

	

Summary

	

5.	 Programming	AWS	Lambda	with	Python

Creating	a	python	lambda	function

	

Using	the	Serverless	Framework	with	Python

	

Building	a	Serverless	backend	with	Python

	

Summary

	

6.	 Programming	AWS	Lambda	with	C#

Creating	C#	Lambda	functions	with	.NETCore

Creating	an	AWS	Lambda	project

	

Creating	C#	Serverless	Project	with	.NET	Core

	

Summary

	

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

	

Preface
Welcome	to	Learning	AWS	Lambda!

In	this	book,	you	will	learn	how	to	use	Lambda,	how	to	use	it	in	combination
with	other	AWS	services,	in	particular	API	Gateway	Service,	but	also	services
such	as	DynamoDB,	which	is	the	database	as	a	service	offering	by	Amazon	that
is	also	a	pay-per-use	utility-based,	utility	computing-based	service,	which	works
very	well	in	the	context	of	our	serverless	application	architecture.

Also,	we	will	look	at	other	Amazon	Web	Services	that	work	well	alongside
Lambda.	In	addition,	you	will	learn	how	to	use	the	serverless	framework	to	build
larger	applications	to	structure	your	code,	to	autogenerate	boilerplate	code	that
you	can	use	to	get	started	quickly.	In	this	video,	we	will	explore	Lambda	and	you
will	learn	how	to	build	scalable	and	cost-efficient	applications	that	require	nearly
no	operations	once	you	have	built	and	deployed	your	application.

So	let's	get	started	on	this	wonderful	journey.

What	this	book	covers
Chapter	1,	Getting	Started	with	AWS,	gives	you	an	introduction	to	the	fundamental
concepts	of	AWS	and	also	explores	the	AWS	web	dashboard.	You	will	also	learn
to	create	and	test	your	first	lambda	function	as	well.

Chapter	2,	Exploring	the	Serverless	Framework,	teaches	you	how	to	use	the
Serverless	Framework	to	create	and	test	Lambda	functions	and	APIs.	You	will
also	try	out	different	approaches	for	API	testing,	Lambda	testing,	and	debugging.

Chapter	3,	Building	a	Serverless	Application,	shows	you	how	to	build	your	first
serverless	application.

Chapter	4,	Programming	AWS	Lambda	with	Java,	focuses	on	how	to	program
Lambda	using	Java.	You	will	also	learn	how	to	use	Eclipse	with	the	AWS
Toolkit	plugin.

Chapter	5,	Programming	AWS	Lambda	with	Python,	features	how	to	create
Lambda	functions	from	blueprints	on	the	AWS	Management	Console	using
Python.

Chapter	6,	Programming	AWS	Lambda	with	C#,	showcases	how	to	create	C#
Lambda	functions	and	serverless	projects	with	NET	Core.

What	you	need	for	this	book
	

The	only	prerequisite	for	this	course	is	to	have	basic	programming	or	scripting
experience,	which	will	facilitate	the	understanding	of	the	examples	quickly.

In	terms	of	environment,	you	only	need	to	download	the	virtual	machine	that
contains	the	vulnerable	target	web	application	and	the	Python	environment	with
all	the	necessary	libraries.	To	run	a	virtual	machine,	you	will	need	to	install
VirtualBox	from	www.virtualbox.org.

	

	

	

http://www.virtualbox.org

Who	this	book	is	for
This	book	is	primarily	for	IT	architects	and	developers	who	want	to	build
scalable	systems	and	deploy	serverless	applications	with	AWS	Lambda.	No	prior
knowledge	of	AWS	is	necessary.

To	get	the	most	out	of	this	book
This	book	will	give	you	the	maximum	benefit	if	you	have	some	theoretical
knowledge	of	AWS	services.	Additionally,	install	the	following	in	your	system:

Java	version	1.8
Visual	Studio	2015
Python	2.7.15

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/AWS-Lambda-Quick-Start-Guide.	In	case	there's	an	update	to	the	code,	it	will	be
updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/AWS-Lambda-Quick-Start-Guide
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/AWSLambdaQuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/AWSLambdaQuickStartGuide_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

service:	blog

provider:

		name:	aws

		runtime:	nodejs4.3

		stage:	dev

		region:	eu-central-1

Any	command-line	input	or	output	is	written	as	follows:

sls	create	-t	aws-nodejs	-n	blog

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	on	screen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
	

Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

https://www.packtpub.com/

Bibliography
The	material	in	this	book	has	been	selected	from	the	content	of	Packt's	video
Learning	AWS	Lambda	by	Markus	Klems	to	provide	a	specific	focus	on	learning
to	build	and	deploy	serverless	apps	on	AWS.

Getting	Started	with	AWS
	

Amazon	Web	Services	(AWS)	is	a	collection	of	web	services	that	together
make	up	a	cloud	computing	platform	that	can	help	make	an	organization	more
efficient.	It	offers	a	broad	set	of	global	computing,	storage,	database,	analytic,
application,	and	deployment	services.	AWS	is	very	beneficial	as	it	is	highly
flexible	and	very	easy	to	use.	It	is	also	very	cost-effective	and	reliable,	with	high
performance	and	scalability.

In	this	chapter,	we	are	going	to	take	a	look	at	fundamental	AWS	concepts,	such
as	cloud	service	usage	and	pricing	models.	We	will	explore	the	AWS	web
dashboard,	the	so-called	Management	Console.	On	the	Management	Console,
we	will	take	our	first	steps	with	Lambda	and	the	API	Gateway	Service.

Now,	we	are	going	to	have	a	look	at	the	following	topics:

Introduction	to	the	fundamental	concepts	of	AWS
AWS	account	walkthrough
AWS	Lambda
AWS	API	Gateway

	

	

Installation	and	setup	guide
Before	going	any	further	into	how	to	use	AWS,	let's	first	create	and	set	up	an
AWS	account.	This	is	a	prerequisite	for	getting	started	with	programming	AWS
Lambda.	Here,	I'm	going	to	show	you	how	to	sign	up	for	an	AWS	account	and
then	I	will	show	you	how	to	create	a	special	IAM	user	with	administrator	access
permissions.	After	that,	I'll	show	you	how	to	set	up	a	local	development
environment	with	AWS	credentials.	So	let's	dive	in:

1.	 First,	open	the	web	browser	on	the	main	website	of	Amazon	Web	Services,	
https://aws.amazon.com/

2.	 Click	on	the	Create	an	AWS	Account	button	to	create	a	new	AWS	account
3.	 Select	the	I	am	a	new	user	radio	button	and	enter	your	email	address
4.	 Then,	fill	out	the	rest	of	the	information	and	go	through	the	sign-up	process:

Once	the	account	has	been	created,	sign	in	to	the	AWS	Management	Console.
More	information	on	the	console	will	be	provided	later	on.	For	now,	click
Services	in	the	drop-down	menu	and	search	for	IAM.	Click	on	IAM	to	navigate	to

https://aws.amazon.com/

the	Identity	and	Access	Management	dashboard.	Here,	I	am	going	to	show	you
how	to	create	a	special	IAM	user	that	has	certain	permissions	to	use	AWS
services	on	my	behalf.	This	is	a	good	security	practice.	You	shouldn't	use	your
root	account	credentials	for	programmatically	accessing	Amazon	Web	Services.
It	could	create	problems	for	you—for	example,	you	could	accidentally	publish
your	AWS	credentials	on	GitHub	or	somewhere	else	where	other	people	can	see
them,	and	using	these	details,	they	could	then	use	your	AWS	services.	If	this
happens	to	you,	it's	pretty	easy	to	use	IAM	to	simply	delete	your	user	and	revoke
these	permissions:

In	this	tutorial,	I'm	going	to	create	a	group	and	an	IAM	user	to	perform	the
exercises.	After	we	are	done	with	the	tutorial,	you	can	simply	delete	the	user	and
the	group.

Let's	start	by	creating	an	IAM	group.	Set	up	a	group	name.	For	this	tutorial,	I	am
naming	the	group	learninggroup.	For	simplicity,	what	I'm	going	to	do	is	give	my
group	administrator	access.	If	you're	more	paranoid,	you	can	restrict	this	further,

but	then	you	might	have	to	deal	with	a	bit	more	hassle.	I	think	for	the	purposes
of	this	tutorial,	and	assuming	that	you	will	delete	this	group	and	the	user	later	on,
it's	fine	to	go	with	administrator	access.	Click	on	Next	Step	and	Create	Group.

Now	I'm	going	to	create	a	new	user.	Click	on	Users	|	Add	User.	Here,	I	will	give
my	user	the	name	learninglambda,	and	I'm	going	to	select	the	programmatic	access
checkbox.	This	will	create	an	access	key	ID	and	a	secret	access	key	so	that	you
can	programmatically	use	Amazon	Web	Services:

In	the	next	step,	I	will	show	you	how	to	set	up	your	local	development
environment	with	the	access	key	ID	and	the	secret	access	key	ID	so	that	you	can
use	AWS	from	within	IDEs,	such	as	Eclipse	or	Visual	Studio,	or	through
development	frameworks,	such	as	the	Serverless	framework.	If	you	want,	you
could	also	give	your	new	IAM	user	AWS	Management	Console	access.	Click	on
Next	Permissions.	I	added	my	IAM	user	to	the	learninggroup	and	now	I'm	going	to
create	the	user.	Once	the	user	has	been	created,	you	will	be	provided	with	the

access	key	ID	and	the	secret	access	key	ID.	Copy	both	of	them	into	a	blank	text
file	as	you	will	need	them	for	the	next	step.	Copy	both	of	them	into	a	text	editor:

AKIAIWRW3LZDPQIY3TPQ

v9kIjVVCd0pDWTB0LJDKtVi3+MVlYhkDlyBF79z7

Now,	I'm	going	to	show	you	how	to	set	up	your	local	development	environment
so	that	you	can	programmatically	access	AWS	services	from	within	your	local
development	environment.	This	is	used	by	a	number	of	IDEs,	such	as	Eclipse	or
Visual	Studio,	and	other	development	frameworks,	such	as	the	Serverless
framework.	I'm	going	to	show	you	how	to	do	this	for	macOS.	It	works	in	a
similar	way	for	Linux.

So	the	first	thing	that	we	need	to	do	is	create	a	hidden	directory	named	AWS	in
your	home	folder.	I	created	a	hidden	directory,	and	now	in	that	directory	I	will
create	a	file	named	credentials.	In	that	file,	I'm	going	copy	my	access	key	and	my
secret	access	key	in	the	following	format.	What	this	does	is	specify	the	IAM
profile	that	I	want	to	use:

mkdir	~/.aws

touch	~/.aws/credentials

This	is	the	default	IAM	profile	that	my	IDE	or	development	framework	is	going
to	use	with	the	following	access	key	ID	and	secret	access	key	credentials.	After
you	have	entered	the	content	into	your	credentials	file,	it	should	look	like	the
following:

[default]

aws_access_key_id=AKIAISSXZB2PNT6VVG3Q

aws_secret_access_key=ybv3rDoNNJDdbF0l9XWxVaHv0t8bYF5p0hU5g

You	need	to	set	up	your	own	access	key	ID	and	secret	access	key,	because	the
credentials	that	we	have	been	using	will	soon	not	exist	anymore:

cat	~/.aws/credentials

Now	I	am	going	to	explain	how	to	set	up	your	AWS	credentials	file	on	your
operating	system.

Set	up	your	local	development	PC/laptop	with	AWS	credentials

If	you	are	using	Linux	or	macOS,	you	should	create	a	hidden	directory,	.aws,	in

your	home	folder.	If	you're	using	Windows,	you	should	create	a	hidden	AWS
directory	in	your	user's	profile	directory.	Then	you	copy	the	content,	your	access
key	ID,	and	the	secret	access	key.

Installing	the	Serverless	framework
	

To	install	the	Serverless	framework,	you	basically	need	to	do	the	following:

You	need	to	install	Node.js.	When	you	install	Node.js,	the	Node	package
manager	will	be	installed.
Then	you	can	use	npm,	the	Node	package	manager,	to	install	the	Serverless
framework	by	typing	npm	install	-g.	This	will	initiate	a	global	installation	so
you	can	launch	the	serverless	command	from	anywhere	on	Terminal.	Type
npm	install	-g	serverless	into	Terminal	to	install	the	Serverless	framework
using	the	node	package	manager.

You	can	also	follow	the	guide	at	https://serverless.com/framework/docs/providers/aws/guide/installation/.

	

	

	

https://serverless.com/framework/docs/providers/aws/guide/installation/

Introduction	to	AWS
Let's	move	on	to	the	first	official	section	of	this	chapter,	which	gives	you	an
introduction	to	AWS.	In	this	section,	we	are	going	to	take	a	look	at	Lambda
usage	and	pay-per-use	pricing,	and	also	where	to	find	documentation	and	other
developer	resources:

1.	 Let's	go	to	the	home	page	for	aws.Amazon.com/lambda,	as	shown	in	the	following
screenshot:

2.	 Head	over	to	the	Documentation	page.	The	Documentation	page	gives	you
links	to	many	useful	resources,	such	as	SDKs	and	tools.	But,	for	now,	let's
take	a	look	at	the	Developer	Guide.

3.	 The	Developer	Guide	gives	us	a	lot	of	useful	background	information	on
how	Lambda	works.

4.	 Click	on	the	section	called	Building	Applications	with	AWS	and	click	on
the	Event	Source	Mapping:

5.	 Scroll	down	a	bit	and	you	will	be	able	to	see	an	example	of	how	we	can	use
Lambda,	shown	in	the	following	screenshot:

In	this	example,	Amazon	S3	pushes	events	and	invokes	a	Lambda	function.
Amazon	S3	(or	Amazon	Simple	Storage	Service)	is	a	scalable	web	service	for
storing	and	retrieving	large	amounts	of	data.	In	this	example,	we	have	a	user
who	uploads	a	file	into	an	Amazon	S3	bucket.	This	triggers	an	object-created
event.	The	object-created	event	is	detected	by	Amazon	S3,	which	triggers	S3	to
invoke	our	Lambda	function.	The	Lambda	function	is	associated	with	an
execution	role.	The	execution	role	gives	our	set	certain	permissions.	So,	in	this
scenario,	Amazon	S3	needs	to	have	permissions	to	invoke	our	Lambda	function,
otherwise	any	other	service	would	be	able	to	invoke	our	Lambda	function,	which
we	want	to	avoid.	So,	if	these	permissions	are	given,	our	Lambda	function	is
invoked	with	the	event	data	from	our	Amazon	S3	service	invocation.	This	is	also
referred	to	as	the	push	event	model,	but	there's	another	way	to	use	AWS
Lambda.	Let's	scroll	down	a	little	bit	to	the	next	example:	

Here,	we	have	a	stream-based	service.	In	this	example,	Lambda	pulls	events
from	an	Amazon	Kinesis	stream	and	invokes	the	Lambda	function.	On	the	left-
hand	side,	you	can	see	a	custom	application	that	writes	data	on	a	Kinesis	stream.
On	the	right-hand	side,	our	Lambda	function	continuously	picks	up	pieces	or
records	from	this	stream.	Again,	we	have	an	execution	role	associated	with	our
Lambda	function,	but	in	this	case	it	works	the	other	way	around.	In	this	case,	we
need	to	give	our	Lambda	function	permission	to	access	the	Kinesis	stream
because	here	we	are	in	the	so-called	pull	event	model.	Whenever	we	pick	up	a
new	record,	the	Lambda	function	is	executed.

Cloud	service	pricing
Now	let's	take	a	quick	look	at	cloud	service	pricing.	Cloud	services	work	quite
differently	from	traditional	web	hosting,	and	this	also	applies	to	pricing.	With	the
traditional	web	hoster,	you	typically	sign	up	for	a	long-term	contract,	maybe	one
year	or	two	years,	and	you	pay	for	the	resources	whether	you	use	them	or	not.
With	cloud	services,	this	works	quite	differently.	With	cloud	services,	you	only
pay	for	the	resources	that	you	actually	use	with	very	fine	granularity.	The
downside	of	this	is	that	the	pricing	model	becomes	a	bit	more	complicated:	

As	you	can	see	in	the	preceding	screenshot,	each	Amazon	web	service	has	its
individual	pricing	model.	Typically,	it	breaks	down	into	charges	for	the	compute
capacity,	storage	capacity,	and	data	transfer	that	you	use.

Let's	take	a	closer	look	at	the	pricing	model	of	AWS	Lambda.	The	pricing	model
breaks	down	into	two	parts:

First,	you	pay	for	requests,	which	is	actually	quite	cheap.	It's	only	20	cents

for	1	million	requests.
The	other	thing	that	you	pay	for	is	duration,	which	is	the	time	that	your
Lambda	function	runs	for.	This	time	period	is	rounded	up	to	the	nearest	100
milliseconds.	So,	if	you	have	a	short-running	Lambda	function	that	only
runs	for	50	milliseconds,	you	pay	for	100.	If	you	have	a	Lambda	function
that	runs	for	910	milliseconds,	you	pay	for	1	full	second.	You	also	have	to
pay	for	the	amount	of	memory	that	you	allocate	to	your	function.	You	can
configure	your	Lambda	function	with	different	levels	of	memory.	You	then
get	charged	this	fixed	price,	price	constant,	for	every	gigabyte-second	that
you	use.

Let's	take	a	quick	look	at	a	sample	calculation.	When	you	scroll	further	down	in
the	page,	you	will	see	different	pricing	examples.	Let's	have	a	look	at	the	first
pricing	example.

Pricing	example
In	this	example,	you	will	configure	your	Lambda	function	with	half	a	gigabyte
of	memory.	We	will	assume	that	the	Lambda	function	is	called	3	million	times
within	one	month.	Each	Lambda	function,	we	will	assume,	runs	for	one	second.
With	this	in	mind,	our	monthly	compute	charges	would	be	calculated	as	follows:

Given	these	details,	we	need	to	calculate	the	total	amount	of	time	that	our
Lambda	function	is	running	for:	3	million	invocations	X	one	second	per
invocation	is	equal	to	3	million	seconds.	Then	we	calculate	the	compute	capacity
that	is	used	during	these	invocations.	We	use	Lambda	functions	for	3	million
seconds,	and	each	Lambda	function	is	allocated	with	half	a	gigabyte	of	memory,
so	we	use	1.5	gigabyte-seconds.	However,	Lambda	comes	with	a	free	tier,	so	up
to	a	certain	level	you	get	compute	capacity	and	requests	for	free.	So	if	you
deduct	these	from	your	calculation,	then	you	end	up	with	1.1	gigabyte-seconds.
To	calculate	this,	you	multiply	that	with	your	fixed	price	constant	and	you	end
up	with	roughly	18	dollars	per	month:

You	must	also	pay	for	request	charges.	However,	this	only	costs	20	cents	per
million	requests,	and	the	first	million	requests	are	free,	so	you	only	have	to	pay

for	2	million	requests,	which	in	other	words	will	cost	you	only	40	cents.

So	your	final	calculation	for	the	monthly	charges	will	amount	to	roughly	18-19
dollars	per	month	(both	the	compute	and	request	charges).

The	next	section	is	about	the	AWS	web	dashboard,	the	so-called	Management
Console.	So	let's	dive	into	that!

AWS	Management	Console
After	reading	the	previous	section,	you	will	be	familiar	with	Lambda	usage	and
pricing	models.	Now	we	are	going	to	explore	the	AWS	Management	Console.

In	this	section,	we	are	going	to	take	a	look	at	how	to	navigate	the	Management
Console,	how	to	switch	between	services,	and	what	Amazon	Web	Service
regions	are.	Get	onto	the	landing	page	of	AWS,	aws.amazon.com.	Sign	in	to	the
Management	Console	by	clicking	on	the	button	in	the	upper-right	corner.	Once
signed	in,	you	will	see	a	navigation	bar	on	the	top.	On	the	left-hand	side,	there's
a	Services	dropdown.	You	can	see	all	the	Amazon	Web	Services	that	are
available	to	us,	as	shown	in	the	following	screenshot:	

These	services	are	all	clustered	by	service	category;	for	example,	compute
services	such	as	EC2-Lambda	are	also	in	this	category.	We	also	have	storage
services,	such	as	S3,	the	simple	storage	service.	We	also	have	database	services,
such	as	DynamoDB,	a	database	service	that	we	will	use	later.	Finally,	there	are
also	application	services,	such	as	API	Gateway.	You	can	also	pin	certain	services
to	your	navigation	bar	to	access	them	more	quickly.	Click	on	the	little	pin	button
and	you	can	drag	down	a	service	or	drag	up	a	certain	service.	Click	the	little	pin
button	again;	now	it's	stuck	to	your	navigation	bar.

http://aws.amazon.com

Regions
One	concept	that	is	important	to	know	about	is	the	concept	of	regions.	I'm
currently	in	the	North	Virginia,	or	US	East	1,	region.	This	is	the	default	region
for	all	Amazon	Web	Services.	If	I	click	on	this	drop-down	menu,	I	can	see	other
regions,	such	as	Ohio,	Northern	California,	Ireland,	Frankfurt,	and	so	on.	Each
region	corresponds	to	an	Amazon	Web	Services	data	center,	and	most	services
are	specific	to	a	certain	region,	so	if	you	create	resources,	they	are	bound	to	the
particular	region	that	they	were	created	in.	If	you	switch	region,	you	won't	see
resources	that	you	created	in	another	region.	Moreover,	not	all	services	are
available	in	all	regions.	If	we	click,	for	example,	on	Lambda,	then	we	can	see
that	Lambda	is	available	in	Northern	Virginia,	but	it	is	not	available	in	Canada
Central,	in	Asia	Pacific	Mumbai,	or	in	South	America,	at	least	not	at	the	time	of
writing.	So	it	will	typically	take	some	time	before	all	regions	catch	up	and
support	all	services.	In	this	tutorial,	I	will	use	the	EU	Frankfurt	region,	and	I
would	advise	that	you	use	the	same	region	so	that	what	I	show	you	is	consistent
with	what	you	are	doing.

So	if	you	use	a	service	in	a	certain	region,	it	typically	has	a	region-specific
endpoint.	You	can	find	more	information	about	regions	and	endpoints	at
docs.aws.amazon.com/general/latest/gr/rande.html.

The	following	screenshot	shows	regions	where	Lambda	is	available:	

In	the	next	section,	we	are	going	to	create	our	first	Lambda	function.	Let's	get	on
with	that!

AWS	Lambda
In	the	previous	section,	we	learned	about	the	Amazon	Web	Service	Management
Console.	Now	we	will	look	into	AWS	Lambda.	Here,	we	are	going	to	take	a	look
at	the	Lambda	web	dashboard,	the	Lambda	function	blueprints,	how	to	configure
and	deploy	the	Lambda	function,	and	how	to	test	it—all	from	the	Management
Console.	So	let's	head	over	to	the	Lambda	service.

To	learn	how	to	access	the	Lambda	service,	read	the	AWS	Management	Console	section.

Once	you	are	in	your	Lambda	web	dashboard,	click	on	the	blue	Get	Started	Now
button	to	create	your	first	function.

You	can	select	from	a	number	of	blueprints,	which	give	you	Lambda	functions
with	a	little	bit	of	dummy	code.	You	can	filter	by	runtime,	and	since	this	is
volume	one,	we	want	to	use	Node.js.	So	click	on	Node.js	4.3:

Let's	use	the	Blank	Function	blueprint.	If	I	want,	I	can	create	a	trigger	that
triggers	my	Lambda	function.	There	are	different	kinds	of	triggers,	but	for	the
first	exercise,	let's	not	select	any	trigger.	Let's	leave	it	empty	and	just	click	on	the
Next	button.

Now	we	need	to	enter	some	configuration	information	for	our	function,	such	as	a
function	name:

The	runtime	is	correct,	so	we	will	scroll	down	a	little	bit.	Here	you	can	see	that	I
have	a	function	handler,	as	shown	in	the	highlighted	portion	in	the	following
code:

exports.handler	=	(event,	context,	callback)	=>	{

			//	TODO	implement

			callback(null,	'Hello	from	Lamda');

};

This	function	will	be	assigned	to	the	exports.handler	property,	which	is	then
exported	through	the	Node.js	export.	My	Lambda	function	handler	takes	up	to
three	arguments.	The	last	argument,	the	callback,	is	optional.	The	first	argument
is	my	event,	so	my	Lambda	function;	is	triggered	through	an	event.	The	caller	of
my	Lambda	function	can	pass	in	information.	For	example,	if	an	S3	object-
created	event	invokes	my	Lambda	function,	I	can	retrieve	object	metadata.	If	an
HTTP	request	invokes	my	Lambda	function,	I	can	retrieve,	for	example,	a	JSON
body	from	the	HTTP	event.	The	second	object	is	the	context	of	my	Lambda
function,	I	can	access	runtime	information	through	this	context	object.	Last	but
not	least,	the	optional	callback	function	is	the	typical	Node.js	error-first	callback
function.	I	can	invoke	it	in	this	case	without	an	error,	so	I	will	set	the	first
parameter,	or	the	first	argument,	to	null.	I	also	set	the	result,	the	second
argument,	to	Hello	from	Lambda.	So	the	caller	will	retrieve	the	message	Hello
from	Lambda	when	the	Lambda	function	is	invoked.

What	we	also	need	to	do	is	set	the	right	permissions	for	the	Lambda	function.	So
scroll	down	to	the	Lambda	function	handler	and	role.	Click	on	the	Role
dropdown,	and	create	a	custom	role.	Select	lambda_basic_execution	in	the	IAM	Role
dropdown	and	click	on	Allow.	This	will	set	the	role	to	Lambda	basic	execution,
as	shown	in	the	following	screenshot:

You	can	even	configure	the	amount	of	memory	that	you	want	to	use	in	your
Lambda	function	by	scrolling	down.	Remember,	the	more	memory	you	give	it,
the	faster	it	executes,	but	the	more	you	have	to	pay.	Let's	stick	to	the	smallest
amount,	128	megabytes.	You	can	also	specify	a	timeout	so	that	if	the	Lambda
function	doesn't	terminate	within	this	amount	of	time,	then	it	times	out.	Let's
leave	it	at	the	default	of	three	seconds.

Scroll	down	and	click	on	the	Next	button.	Have	a	look	at	the	settings,	scroll
down,	and	click	on	Create	Function.	You	will	be	able	to	obtain	similar	details	to
those	shown	in	the	following	screenshot:

Congrats!	You	have	created	your	first	Lambda	function!	Let's	test	it.

Click	on	the	Test	button	and	this	will	execute	the	test	that	results	in	Lambda
saying	Hello.

You	can	also	configure	your	test	event	in	this	way	and	give	it	sample	event	data.	Since	I	don't
use	the	event	in	my	simple	Lambda	function	at	all,	it	doesn't	matter	what	is	pasted—simply
click	Save	and	Test.

AWS	API	Gateway
In	the	previous	section,	we	created	our	first	Lambda	function.	Now	let's	explore
the	API	Gateway	Service.	Let's	take	a	look	at	the	API	Gateway	Service	web
dashboard.	We	will	use	it	to	create	a	new	API	and	then	connect	that	API	to	our
Lambda	function.	Last	but	not	least,	we	will	test	our	API,	and	through	our	API,
we	will	invoke	the	Lambda	function.	So	let's	start.

Log	in	to	the	Management	Console	in	the	Frankfurt	region	where	you	can	create
your	first	Lambda	function.	Now	let's	go	to	the	API	Gateway	Service.	If	you
don't	have	an	API	gateway,	click	on	Let's	Get	Started.	Amazon	might	ask	you	to
import	an	API.	Import	it,	and	once	done,	you	will	be	able	to	see	a	reference	API
that	can	be	used	to	learn	more	about	APIs,	but	it	will	be	a	bit	too	complex	for
our	first	use	case.	So,	let's	create	a	simpler	API	by	clicking	on	the	Create	API
button.	Create	a	new	API	and	give	it	the	name	FirstAPI.	After	that,	click	on	Create
API.

So	now	I	have	an	API,	and	it	can	configure	a	couple	of	things,	but	for	now,	let's
just	create	a	resource	that	can	be	found	in	the	Actions	button,	as	shown	in	the
following	screenshot:

I	will	take	a	REST	resource	and	name	it	foo.	It	will	get	the	resource	path	foo.
After	this,	I	will	click	on	Create	Resource.	A	resource	alone	is	not	enough;	I	also
need	a	method.	So	let's	click	on	Create	method	and	select	an	HTTP	GET	method,	as

seen	in	the	following	screenshot:

Click	on	the	little	checkmark.	Et	voila!	We	have	a	simple	API	with	one	resource,
foo,	and	a	GET	method:

Now	we	can	integrate	it	with	different	kinds	of	services.	We	want	to	integrate	it
with	our	Lambda	function,	so	the	first	radio	button	is	correct.	We	select	the
region.	In	our	current	example,	we	are	in	the	Frankfurt	region	and	our	Lambda
function	is	also	in	the	Frankfurt	region,	so	select	eu-central-1,	which	is	the
Frankfurt	region,	and	then	type	in	the	Lambda	function	name.	I	gave	it	the	name
firstLambda.	Click	on	Save.

Now	the	API	gateway	will	ask	you	if	you	give	the	API	gateway	permission	to
invoke	your	Lambda	function:

So	remember	from	the	beginning	that	you	need	to	give	your	API	permission	to
invoke	your	Lambda	function;	otherwise,	just	anyone	can	invoke	your	Lambda
function,	which	you	don't	want.	Click	on	OK.

Now,	we	have	created	an	integration	between	our	API	and	our	Lambda	function.
Let's	click	on	the	little	Test	button,	as	shown	in	the	following	screenshot:

Once	you	click	it,	you	will	be	able	to	execute	an	HTTP	GET	request	by	scrolling
down	the	page	and	clicking	on	the	TEST	button.

Within	90	milliseconds,	we	will	get	a	response	back—Hello	from	Lambda,	as
seen	in	the	following	screenshot:

So	it	looks	like	we	really	invoked	our	Lambda	function,	but	can	we	be	sure?
Let's	check.	Go	back,	and	click	on	the	foo	resource	and	then	click	on	the	GET
method.	Now	we	can	see	our	integration	again,	and	on	the	right-hand	side,	you
can	see	the	Lambda	function	that	I	have	integrated	my	API	with.	Click	on	it	and
you	will	be	directed	to	the	Lambda	dashboard	with	your	Lambda	function.	Let's
take	a	look	at	the	Monitoring	tab:

As	you	can	see,	it	has	in	fact	just	been	invoked—a	couple	of	times,	actually.

Summary
In	this	chapter,	we	learned	a	couple	of	things:	how	to	navigate	the	AWS	web
dashboard,	and	how	to	navigate	the	Management	Console.	We	also	created	and
tested	our	first	Lambda	function	and	then	we	created	a	REST	API	and	connected
it	to	Lambda.	Then	we	invoked	the	API,	and	through	the	API,	we	invoked	our
Lambda	function.	As	you	can	imagine,	it	can	become	quite	tedious	to	create
more	complex	applications	if	we	do	it	all	on	the	Management	Console.	The
Management	Console	is	great	for	getting	started,	but	it's	not	the	right	tool	for
building	serious	applications.	It	would	be	great	if	there	was	a	programmatic
framework	that	would	help	us	to	do	that.	Thankfully,	there	is.	In	the	next	chapter,
we	will	explore	the	Serverless	framework,	which	is	a	development	framework
that	helps	you	to	build	serverless	applications.	See	you	there.

	

Exploring	the	Serverless	Framework
	

In	the	previous	chapter,	we	learned	how	to	use	the	AWS	Management	Console	to
create	Lambda	functions	and	APIs.	Now,	we	will	use	the	Serverless	framework
to	programmatically	create	APIs	and	Lambda	functions.	We	will	use	the
serverless	command-line	interface	to	deploy	and	test	our	functions.	This	will
tremendously	speed	up	our	development	processes.

The	term	serverless	generally	refers	to	applications	that	make	heavy	use	of
third-party	cloud	services,	such	as	AWS	Lambda.	These	services	are	also
sometimes	referred	to	as	cloud	functions,	serverless	microservices,	or	serverless
functions.	This	doesn't	mean	that	there	are	no	servers	involved	anymore,	just	that
you	haven't	installed	to	manage	and	operate	these	servers	yourself.	This	is
handled	by	the	cloud	provider,	who	takes	care	of	things	like	scalability,	high
availability,	security,	performance,	and	so	on.	Here,	we	will	be	able	to	take	a
deeper	look	at	using	the	Serverless	framework	to	programmatically	deploy	and
test	Lambda	functions,	using	the	serverless	command-line	interface	via	local
function	invocation	and	remote	function	invocation.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

The	Serverless	framework
Creating	a	serverless	project
Programming	a	lambda	function	with	Node.js
Testing	and	debugging	lambda	functions

	

	

The	Serverless	framework
Here,	we	are	going	to	take	a	look	at	the	Serverless	framework	documentation.
We	will	then	take	a	look	at	how	to	install	it,	and	then	we'll	try	out	our	first
commands.

Go	to	the	main	landing	page	of	the	Serverless	framework,	serverless.com.

https://serverless.com/

To	find	all	the	information	that	you	need,	click	on	Quick	Start	Docs.	For	now,
let's	take	a	quick	look	at	the	installation	section.	The	first	thing	that	you	need	to
have	installed	is	Node.js,	and	you	will	find	some	information	on	how	to	install	it
on	your	local	machine.	For	programming	serverless,	we	need	Node.js	version	4
or	higher.	If	you	don't	have	Node.js	already,	please	do	so	now,	and	then	resume.

Serverless	runs	on	Node	4	or	higher.	For	installing,	go	to	the	official	Node.js	website,
download,	and	follow	the	installation	instructions.	If	you	want	to	see	if	Node	has	been

installed	successfully,	just	run	node	--version	in	Terminal.	You	will	be	able	to	see	the
corresponding	Node	version	number	printed	out.

Once	you	open	Terminal,	the	first	thing	that	you	need	to	check	is	if	you	have	the
right	version	of	Node	installed.	Here,	I	am	using	Node	version	6,	which	is	higher
than	4:	node	--version

Next,	I'll	type	in	a	command	using	npm	(node	package	manager)	to	install	the
Serverless	framework.	It	is	better	to	install	it	globally	so	that	it	can	be	accessed
anywhere	by	Terminal,	no	matter	which	directory	it	is	in.	This	will	download	all
the	required	dependencies	and	set	up	a	path	so	that	it	can	execute	the	serverless
commands	for	the	command	line:	npm	install	-g	serverless

Here,	I	have	installed	the	newest	version	of	serverless	which,	at	the	time	of
writing,	is	version	1.6.1:

Now,	I	can	type	in	the	serverless	command,	as	shown	in	the	following
screenshot:

The	previous	screenshot	shows	all	the	sub-commands	that	can	be	used	for	the
serverless	command-line	interface.	If	you	haven't	completed	the	installation	and
setup	steps	from	Chapter	1,	Getting	Started	with	AWS,	you	need	to	execute	the
config	credentials	command,	as	given	above.	The	Serverless	framework	needs	to
access	your	AWS	account	to	execute	certain	AWS	commands	on	your	behalf.	It
needs	to	be	able	to	create	resources,	modify	resources,	and	delete	resources.
Instead	of	typing	serverless,	you	can	also	use	the	sls	shortcut:	

Now	that	we	have	installed	the	Serverless	framework,	let's	create	our	first
serverless	project.

Creating	a	serverless	project
In	the	previous	section,	we	installed	the	Serverless	framework	and	tried	out	the
command	line.	Now,	let's	create	our	first	serverless	project.	We	are	going	to	use
the	Serverless	framework	to	create	a	simple	Node.js	lambda	function	and	a
REST	API.	Open	Terminal	and	create	a	directory	where	you	can	place	your
serverless	project	files.	I	named	it	app,	but	you	can	name	it	whatever	you	want.
Go	to	that	directory	and	open	your	preferred	IDE.	I	used	the	Atom	editor.	When
the	Atom	editor	was	opened	in	my	empty	directory,	I	used	an	Atom	package	at
terminal	plus	to	open	a	new	Terminal	window	inside	my	IDE.	This	makes	it
easier	because	I	don't	need	to	switch	between	writing	code	and	typing	in
commands.	So,	let's	type	in	a	command	to	scaffold	a	serverless	service:

serverless	create	--template	aws-nodejs

The	command	for	creating	a	service	is	created,	but	it	needs	two	more
parameters.	The	first	parameter	is	a	template,	and	here	we	specify	the	cloud
provider,	in	our	case	AWS,	and	the	runtime,	Node.js.

This	command	is	a	bit	lengthy,	so	let's	use	a	shorter	command.

Instead	of	typing	template,	you	can	type	-t.	And,	instead	of	typing	serverless,	we
can	type	sls.	Now,	we	need	one	more	parameter,	the	name	of	our	service.	I	call	it
simple,	the	simple	service.	But,	we	can	also	make	this	shorter,	-n:

sls	create	-t	aws-nodejs	-n	simple

Let's	execute	this	command	to	create	some	boilerplate	code.	And	there	we	go.
Two	files	have	been	created,	the	severless.yml	file	which	describes	our	project,
and	a	handler.js	implementation	of	my	Lambda	function	handler:

Let's	take	a	look	at	the	serverless.yml	file	first:

service:	simple

Here,	you	find	the	configuration	for	our	service,	the	name	of	our	service	that	I've
typed	into	the	command	line,	the	provider	AWS,	and	our	runtime	Node.js.	There
are	also	some	other	configurations.

provider:

					name:	aws

					runtime:	nodejs4.3

Most	of	them	can	stay	in	the	defaults,	but	the	region	is	not	right.	I	want	another
region.	So,	the	default	region	is	in	us-east,	North	Virginia,	and	I	want	to	use
Frankfurt,	so	let's	change	that.	Let's	change	it	from	us-east-1	to	eu-central-1:

provider:

					name:	aws

					runtime:	nodejs4.3

					stage:	dev

					region:	eu-central-1

There	are	some	more	configurations	down	here,	such	as	IAM	permissions,	and
we'll	go	into	detail	on	that	later.	Scroll	down	a	bit	further	and	you	will	find	our
Lambda	function,	as	shown	next:

functions:

				hello:

									handler:	handler.hello

The	function	name	is	hello,	and	the	function	handler	is	specified	as	well.

It	references	a	file,	our	handler.js	file	that	we	created	earlier,	and	that	file	exports
a	hello	module.	Let's	take	a	look	at	the	handler.js	file:

'use	strict';

module.exports.hello	=	Kevent,	context,	callback)	=>	{

		const	response	=	{

				statusCode:	200,

				body:	JSON.stringify({

						message:	'Go	Serverless	v1.0!	Your	function	executed	success

						input:	event,

		}),

};

callback(nu11,	response);

//	Use	this	code	if	you	don‘t	use	the	http	event	with	the	LAMBDA-

integration

//	callback(null,	{	message:	'Go	Serverless	v1.0!	Your	function

executed	successfully',	event	});

};

You	will	see	that	it	exports	a	function,	our	handler	named	hello.	And,	the
signature	looks	familiar	to	what	we	have	seen	before.	We	have	an	event
parameter,	context	parameter,	and	an	optional	callback	parameter.	The
boilerplate	code	specifies	a	response	that	says	Go	Serverless	and	plays	back	the
event	that	has	been	received.	Then,	it	invokes	a	callback,	an	error-first	callback,
without	an	error,	where	we	can	specify	the	response.

Now,	you	can	deploy	this	function	using	sls	deploy.	We	need	to	give	it	the
function	name	hello,	for	-f:

sls	deploy	-f	hello

Now,	this	takes	a	little	time.	What	happens	behind	the	scenes	is	that	serverless
sets	up	some	cloud	formation	templates,	uploads	them	into	an	S3	bucket	in	our
AWS	S3	account,	and	uses	these	templates	to	create	other	AWS	resources,	such
as	our	Lambda	function.	Now,	our	Lambda	function	has	been	deployed	into	the
eu-central-1	region	using	the	dev	stage:

We	haven't	deployed	any	endpoints	yet.	And,	the	function	name	is	simple,	the
name	of	our	service;	dev	is	the	name	of	our	stage;	and	hello	is	the	name	of	our
function.	We	can	invoke	the	remote	function	from	our	command	line	by	using
sls	invoke	and	giving	it	the	function	name	hello.	And,	as	you	can	see,	we	get	back
the	message	that	we	have	specified	in	the	handler.js	boilerplate	code:

sls	invoke	-f	hello

{

							"statusCode":	200,

							"body":	"{\"message\":"Go	Sreverless	v1.0!	Your	function	executed				

							successfully!\",\"input\":{}}"

}

If	you	want	to	do	a	lot	of	testing,	it	would	take	too	much	time	to	always	deploy
the	function	and	then	invoke	the	function	via	sls	invoke,	so	you	can	also	locally
invoke	the	function.	Simply	add	the	parameter	sls	invoke	local:

sls	invoke	local	-f	hello

This	will	call	our	function	locally.	Let's	take	an	example.	Let's	change	our
function	in	the	current	boilerplate	code	to	Hello	World!	as	shown	in	the	following
screenshot:

'use	strict';

module.exports.hello	=	(event,	context,	callback)	=>	{

			const	response	=	{

							statusCode:	200,

							body:	JSON.stringify({

												message:	'Hello	World!',

												input:	event,

							}),

I've	only	changed	my	code	locally.	I	didn't	deploy	it,	so	if	I	invoke	it	locally
again,	it	shows	Hello	World!	as	shown	here:

sls	invoke	local	-f	hello

{

								"statusCode"	200,

								"body":	"{\"message\":\"Hello	World!\",\"input\":\"\"}'

}

If	the	remote	function	is	invoked,	it	shows	Go	Serverless:

sls	invoke	-f	hello

{

							"statusCode":	200,

							"body":	"{\"message\":"Go	Sreverless	v1.0!	Your	function	executed				

							successfully!\",\"input\":{}}"

}

Now,	what	we	need	to	do	is	to	create	an	API.	Let's	go	back	to	the	serverless.yml
file	and	scroll	down	a	little	bit	further	to	our	function.	Here,	we	can	already	see	a
template;	what	we	need	to	do	is	to	create	an	API.	Delete	the	comment	code	and
comment	out	the	events	property,	the	http	property,	the	path,	and	the	method.	What
this	will	do	is	it	will	create	a	simple	REST	API	for	us,	specifying	a	get	method
on	this	resource	path.	Let's	choose	a	different	resource	path.	Let's	call	it	hello,	as
follows:

functions:

		hello:

				handler:	handler.hello

					events:

							-	http:

											path:	hello

											method:	get

											cors:	true

Now,	let's	run	sls	deploy	again,	and	once	sls	deploy	has	been	executed,	we	will
have	an	endpoint	for	our	API:

Try	it	out	in	the	browser.	Copy	and	paste	the	URL	and	it	will	respond	back	with
our	message,	Hello	World!,	and	also	with	the	event	that	it	received	from	us,	as
shown	here:

Programming	a	Lambda	function
with	Node.js
Now,	let's	learn	a	little	bit	more	about	programming	Lambda	functions	with
Node.js.	We	are	going	to	take	a	closer	look	at	the	function	handler,	and	in
particular	its	arguments,	that	is:

Event	objects
Context	objects
Callback	objects

Open	the	handler.js	file	and	delete	the	code	that's	in	the	function	body.	One	way
to	learn	about	the	event	and	context	object	would	be	to	log	them	out	on	the
console:

'use	strict';

module.exports.hello	=	(event,	context,	callback)	=>	{

				console.log('event	is',	event);

};

Let's	see	what	this	gives	us.

I	am	invoking	the	function	locally	to	see	what	the	output	is	with	the	function
name	set	as	hello:

sls	invoke	local	-f	hello

event	is

Ok,	my	event,	apparently,	is	null.	Let's	see	what	the	context	is,	as	shown	next:

module.exports.hello	=	(event,	context,	callback)	=>	{

				console.log('event	is',	event);

				console.log('context	is',	context);

};

The	context	actually	gives	me	an	object.	Since	we	are	invoking	it	locally,	some
information	from	this	emulated	or	mocked	local	environment,	for	example,	a
hard	coded	string	that	says	id	for	the	AWS	request	ID,	memory	limits	in
megabytes,	and	so	on,	is	shown	here:

Let's	change	the	code	a	little	bit,	and,	instead	of	logging	it	out	on	the	console,
let's	send	it	back	via	our	callback	as	it	was	before.	But	this	time,	we	not	only
give	back	the	event	but	also	some	information	from	our	context,	such	as	the
remaining	time	in	milliseconds,	the	function	name,	and	the	request	ID:

let	remainingTime	=	context.getRemainingTimeInMillis();

let	functionName	=	context.functionName;

let	AWSrequestID	=	context.awsRequestId;

const	response	=	{

				statusCode:	200,

				ev:	event,

				rt:	remainingTime,

				fn:	functionName,

				aid:	AWSrequestID

}

callback(null,	response)

};

Let's	invoke	it	locally	first:

sls	invoke	local	-f	hello

Now,	as	shown	in	the	previous	screenshot,	we	get	back	the	status	code,	the	event
doesn't	exist,	response	time	is	a	hard	coded	value	of	6,000	milliseconds,	the
function	name,	and	the	hard	coded	ID.

Now,	let's	deploy	our	function	and	invoke	it	remotely:

sls	deploy

Alright.	Our	function	has	been	deployed:

Once	you	invoke	it	remotely,	you	will	observe	the	following:

Here,	we	can	see	that	the	remaining	time	in	our	remote	execution	is	5,998
milliseconds.	The	time,	however,	is	specified	by	the	default	of	six	seconds,	so	at
the	point	when	the	remaining	time	was	calculated,	we	had	used	two
milliseconds.	Additionally,	the	ID	of	our	request	now	also	looks	quite	different
from	our	local	execution.

However,	the	event	is	still	empty.	Let's	change	that.	Let's	invoke	our	function
with	a	synthetic	event.

Create	an	event.json	file	and	put	a	JSON	object	that	says	foo	and	bar,	as	follows:

{

				"foo":	"bar"

}

Once	that	is	done,	go	to	the	handler.js	file	and	invoke	the	local	function	with	the

path	to	the	event.json	file.	Instead	of	typing	path,	you	can	type	-p,	as	follows:

sls	invoke	local	-f	hello	-p	event.json

And	now,	we	get	back	the	event	that	we	have	invoked	the	Lambda	function	with:

And,	if	invoked	remotely,	you	will	get	the	same	event	because	it	invokes	the
remote	function	with	the	local	event	in	the	event.json	file.

OK.	Let's	take	a	quick	look	at	the	callback	object.	What	happens	if	we	don't
provide	a	callback	object?	Can	we	still	execute	our	Lambda	function?	Let's	try	it
out.	Let's	invoke	the	local	Lambda	function.	It	doesn't	throw	an	error,	but	it	also
doesn't	give	us	a	response	either.	What	happens	if	we	invoke	the	callback
function	without	any	arguments?	It's	basically	the	same	as	having	no	callback
function	at	all.	What	about	invoking	it	with	null?	This	has	the	same	effect.	Now,
how	can	we	throw	an	error?	We	have	an	error-first	callback	function,	so	this
should	give	us	an	error.

Testing	and	debugging	Lambda
functions
In	the	previous	section,	we	learned	about	programming	Lambda	function
handlers.	Now,	let's	explore	testing	and	debugging.

Here,	we	are	going	to	look	at	three	different	testing	and	debugging	approaches:

Using	the	Serverless	framework
Using	Postman	for	testing	our	API
Using	the	AWS	Management	Console

Let's	go	back	to	our	handler.js	file	from	the	previous	section.	There	are	a	couple
things	that	should	be	changed.	The	response	method	should	be	changed	back	to
something	that	our	API	can	work	with.

Give	it	a	body	property	with	a	stringify	JSON	content,	as	shown	here:

body:	JSON.stringify({

And,	in	the	JSON	content,	get	back	the	event	in	the	remaining	time	from	the
context,	and	then,	instead	of	returning	an	error,	we	will	return	the	response:

'use	strict';

module.exports.hello	=	(event,	context,	callback)	=>	{

				let	remainingTime	=	context.getRemainingTimeInMillis();

				let	functionName	=	context.functionName;

				let	AWSrequestID	=	context.awsRequestId;

				

				const	response	=	{

								statusCode:	200,

								body:	JSON.stringify({

												ev:	event,

												rt:	remainingTime

								})

				};

				callback(null,	response);

};

After	that,	invoke	the	function	locally	by	using	the	synthetic	event:

sls	invoke	local	-f	hello	-p	event.json

{

				"statusCode":	200,

					"body":	"{\"ev\":{\"foo\":\"bar\"},\"rt\":5000}"

}

Now,	let's	add	some	console	log	statements	to	the	beginning	of	the	function,	and
then	log	out	the	event	and	the	context:

'use	strict';

module.exports.hello	=	(event,	context,	callback)	=>	{

				console.log('event	is',	event);

				console.log('context	is',	context);

				let	remainingTime	=	context.getRemainingTimeInMillis();

				let	functionName	=	context.functionName;

				let	AWSrequestID	=	context.awsRequestId;

Once	done,	invoke	the	function:

You	should	notice	that	the	function	has	been	invoked	locally,	and	the	console
output	is	seen	right	before	the	response	from	the	callback.	Deploy	the	function
and,	once	deployed,	call	the	invoke	command	without	the	local	sub-command:

sls	invoke	-f	hello	-p	event.json

This	will	get	the	response	from	the	callback.	However,	you	won't	be	able	to	see
the	console	log.	So,	how	do	we	retrieve	the	remote	logs?

Scroll	over	to	the	sls	command;	you	will	notice	a	logs	sub-command:

Try	using	the	logs	sub-command	with	the	function	name	hello	as	a	parameter:

sls	logs	-f	hello

You	will	be	able	to	see	the	logs	that	have	been	retrieved	from	the	AWS	account,
as	shown	here:

This	uses	a	service	called	CloudWatch.	You	can	also	see	the	console-log	output
event,	and	the	context	as	well:

Also,	as	shown	above,	Amazon	gives	some	additional	information,	such	as	the
duration	used.	So,	in	the	preceding	screenshot,	we	actually	just	used	60
milliseconds,	but	because	it's	rounded	up	to	the	nears	100,	we	are	billed	for	100
milliseconds.	We	have	configured	our	Lambda	function	with	1	GB	of	memory,

but	we	only	used	9	MB.	Such	information	is	also	useful	for	cost-optimization
purposes.

Testing	the	API	using	Postman
Now,	we	are	going	to	use	Postman	to	test	the	API.	If	you	don't	have	Postman
installed	on	your	computer	yet,	you	can	get	it	at	getpostman.com	and	install	it	on
your	local	operating	system.

So,	let's	test	the	API.	Open	Postman	and	enter	the	URL	that	is	to	serve	as	the
endpoint	for	our	service.	To	retrieve	the	URL,	head	back	to	Terminal.	You	can
get	the	information	about	our	service	by	typing	sls	info,	which	will	provide
several	pieces	of	information	including	the	required	endpoint	that	is	the	URL.
Copy	the	endpoint	and	enter	the	URL.	Select	the	appropriate	HTTP	method	–	in
our	case,	it's	the	get	method—and	send	the	request:

https://www.getpostman.com/

As	shown	previously,	we	get	back	the	response,	including	the	required	event.

Testing	and	debugging	via	the	AWS
Management	Console
Sign	in	to	our	Management	Console	and	go	to	the	API	Gateway	Service.	We	will
see	our	new	API	that	we	created	with	a	Serverless	framework.	Since	we	have
done	this	before,	I	will	briefly	recap	the	process.	Click	on	the	hello	part	and	get
method,	and	click	on	the	Test	icon	to	get	the	following	screenshot:

Scroll	down	and	click	on	Test,	which	will	give	you	the	same	information	as
given	previously	in	Postman.

Go	back	to	our	resource	path	and	get	method,	and	head	over	to	the	Lambda
function,	which	can	be	found	on	the	right-hand	side,	as	shown	here:

Once	you	get	into	the	Lambda	function,	click	on	the	Monitoring	tab	to	view	the
logs	on	the	AWS	Management	Console	dashboard.	You	will	see	some
CloudWatch	metrics	with	various	invocations	and	durations,	as	shown	here:

You	can	access	the	logs	by	clicking	on	View	logs	in	CloudWatch,	which	will
show	a	number	of	logs	that	appeared	over	time	for	the	Lambda	function,	as
shown	as	follows:

It	takes	a	little	bit	of	time	for	these	logs	to	materialize,	so	if	you	invoke	a	remote
Lambda	function	and	instantly	(or	after	just	a	fraction	of	a	second)	you	try	to
retrieve	the	logs,	you	won't	be	successful.	If	you	click	on	these	logs,	you	can	see
the	event	and	context	logs,	which	is	the	information	that	is	retrieved	with	the
first	approach	using	the	Serverless	framework.	Using	the	Serverless	framework,
it's	much	easier	and	much	more	convenient	to	retrieve	these	logs	than	clicking
through	your	AWS	Management	Console.

Summary
In	this	chapter,	we	learned	how	to	use	the	Serverless	framework	to	create	and
test	Lambda	functions	and	APIs,	and	we	tried	out	different	approaches	for	API
testing,	Lambda	testing,	and	debugging.	Now,	we	have	all	the	things	necessary
to	build	a	real	application,	so	in	the	next	chapter,	that's	what	we	are	going	to	do,
by	building	a	serverless	application.

	

Building	a	Serverless	Application
	

In	this	chapter,	we	are	going	to	build	a	web	application	using	a	combination	of
different	technologies.	For	that,	we	will	again	be	using	the	serverless	framework
with	Lambda	and	API	Gateway,	but	we	will	also	use	a	couple	of	other	AWS
services,	particularly	DynamoDB	to	preserve	our	data.	We	will	also	be	using
Cognito	to	identify	users,	and	then	we	will	use	S3	and	CloudFront	to	deploy	our
front	app.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

Building	a	stateless,	serverless	web	application	backend
Creating	a	stateful,	serverless	backend	with	DynamoDB
Creating	a	web	client
Deploying	a	serverless	frontend	on	CloudFront

Let's	dive	in!

Building	a	stateless	serverless	web
application	backend
Here,	we	are	going	to	build	the	stateless	web	application	backend,	and	later	on
we	will	add	the	database.	This	application	will	allow	users	to	create,	read,
update,	and	delete	blog	articles.	Then	we	will	deploy	and	test	our	little	blog	API.

Open	the	Atom	text	editor	in	the	empty	blog-app	directory.	Let's	use	the	command
line	to	create	some	files:

sls	create	-t	aws-nodejs	-n	blog

I	have	used	sls	create	to	create	a	new	service,	but	with	a	new	name—blog.

This	command	line	will	generate	two	files,	serverless.yml	and	handler.js,	as	shown
in	the	following	screenshot:

Open	the	serverless.yml	file	and	delete	some	of	the	comments.	Once	that	is	done,
the	next	thing	you	must	do	is	change	the	region.	Here,	I	am	deploying	my
service	in	the	Frankfurt	region	in	eu-central-1,	as	follows:

service:	blog

provider:

		name:	aws

		runtime:	nodejs4.3

		stage:	dev

		region:	eu-central-1

Now,	scroll	down	to	the	function.	You	have	to	change	the	name	of	the	Lambda
function	from	hello	to	something	like	createArticle.	Once	that	is	done,	we	need	to
rename	the	module	that	gets	exported	to	the	handler.js	file,	as	follows:

functions:

		createArticle:

				handler:	handler.createArticle

Since	the	module	that	the	Lambda	function	references	as	a	handler	function	has
been	renamed,	you	also	need	to	rename	it	in	the	handler.js	file.	So	replace	hello
with	createArticle,	as	shown	in	the	following	screenshot:

'use	strict';

module.exports.createArticle	=	(event,	context,	callback)	=>	

		const	response	=	{

					statusCode:	200,

					body:	JSON.stringify({

								message:	'Go	Serverless	v1.0!	Your	function	executed	successfully!',

								input:	event,

					}),

		};

Once	that	is	done,	let's	go	back	to	the	serverless.yml	file	and	add	our	API
Gateway:

functions:

		createArticle:

					handler:	handler.createArticle

					events:

							-	http:

												path:	users/create

												method:	get

So	the	things	that	must	be	changed	are	the	path	and	the	method.	For	consistency,
let's	name	the	path	createArticle,	while	the	method	should	be	named	the	post
method	rather	than	the	get	method:

functions:

		createArticle:

					handler:	handler.createArticle

					events:

							-	http:

												path:	createArticle

												method:	post

Now	let's	deploy	our	service	by	typing	sls	deploy:

sls	deploy

The	following	screenshot	shows	the	deployed	service:

Once	it	is	deployed,	invoke	the	Lambda	function	and	see	if	it	works:

Next,	let's	use	Postman	to	check	whether	the	API	also	works.	For	that	purpose,
we	will	need	the	endpoint	that	is	provided	in	the	preceding	code.	Copy	the	link
and	open	Postman.

In	Postman,	enter	the	request	URL.	Since	a	post	method	has	been	deployed,
switch	the	tab	to	Post	and	click	Send:

Now,	you	can	change	the	file	structure	by	going	back	to	the	editor	and	changing
it.

Let's	do	that!

Changing	the	file	structure
Go	back	to	the	blog-app	directory.	The	first	thing	we	need	to	do	before
restructuring	the	code	is	to	create	a	subdirectory	named	articles,	as	shown	in	the
following	screenshot:

Now,	move	all	the	Lambda	function	handlers	that	are	related	to	articles	to	the
articles	file.	Once	this	is	done,	you	will	have	the	createArticle	function	in	the
handler.js	file:

However,	there	are	different	ways	in	which	you	can	structure	your	Lambda
function	handlers	and	determine	how	many	Lambda	functions	you	want	to
deploy	per	service.	For	instance,	here	I	would	like	to	have	one	Lambda	function
per	method;	let's	rename	the	handler.js	file	to	create.js,	thereby	reflecting	what	the
Lambda	function	actually	does.	You	also	need	to	change	the	name	of	the	handler
from	createArticle	to	handler:

module.exports.handler	=	(event,	context,	callback)	=>	{

				const	response	=	{

								statusCode:	200,

								body:	JSON.stringify({

												message:	'Go	Serverless	v1.0!	Your	function	executed	successfully!',

												input:	event,

								}),

We	should	also	update	our	serverless.yml	file.	Scroll	down	to	the	functions.

We	need	to	change	the	function	name	and	the	function	that	should	be	exported.
Since	the	path	of	the	function	handler	has	changed,	it	will	be	in	the	articles
subdirectory	under	the	filename	create.	The	function	that	is	exported	is	not
createArticle	anymore,	but	handler:

functions:

		createArticle:

					handler:	articles/create.handler

					events:

							-	http:

												path:	createArticle

												method:	post

#						-	s3:	${env:BUCKET}

#						-	schedule:	rate(10	minutes)

So	here,	the	Lambda	function	is	named	createArticle	and	the	function	handler	is
the	article	subdirectory.	The	file	is	named	create	and	is	a	function	handler,	so	why
not	name	it	handler?

Once	that	is	done,	let's	remove	the	dummy	code	from	the	function	handler	and
replace	it	with	something	else.	The	first	thing	that	should	be	done	is	to	parse	the
event	object.	Since	it	is	an	HTTP	event,	it	should	have	a	body	property.	I	saved
the	body	property	in	a	constant	named	data:

'use	strict'

module.exports.handler	=	{event,	context,	callback)	=>	{

				const	data	=	JSON.parse(event.body);

				if	(typeof	data.text	!==	'string')	{

								console.error('Validation	Failed');

								callback(new	Error('Body	did	not	contain	a	text	property.'));

									return;

				}

};

Now	let's	assume	that	it	has	a	certain	structure	and	that	the	data	object	has	a	text
property	of	the	string	type.	We	also	need	to	check	that	the	code	conforms	to	the
following	screenshot:

module.exports.handler	=	{event,	context,	callback}	=>	{

			const	data	=	JSON.parse(event.body);

			if	(data.text	&&	typeof	data.text	!==	'string')	{

							console.error('Validation	Failed');

							callback(new	Error('Body	did	not	contain	a	text	property.'));

							return;

			}

};

If	the	validation	fails,	then	the	error	must	be	logged	on	the	console	so	that	the
callback	message	can	be	sent.

Next,	for	debugging	purposes,	log	out	of	the	text	property	on	the	console	and
prepare	a	response	message	for	the	callback	that	has	a	status	code	of	200,	which
will	send	back	a	message	stating	Created	article,	as	shown	in	the	following
screenshot.	Once	done,	invoke	the	callback	with	a	response:

module.exports.handler	=	{event,	context,	callback}	=>	{

			const	data	=	JSON.parse(event.body);

			if	(data.text	&&	typeof	data.text	!==	'string')	{

							console.error('Validation	Failed');

							callback(new	Error('Body	did	not	contain	a	text	property.'));

							return;

			}

			console.log(data.text);

			const	respose	=	{

						statusCode:	200,

						body:	JSON.stringify({

										message:	'Created	article.'

						}),

			};

			callback(null,	response);

};			

Let's	deploy	our	service	and	try	it	out:

The	service	has	been	deployed.	Now	we	will	head	back	to	Postman	to	test	the
API.

We	will	again	send	a	post	request,	but	this	time	we	will	click	with	a	Body	(found
in	the	tab).	It	should	be	JSON-encoded	and	contain	the	text	hello	world,	as	shown
in	the	following	screenshot:

Now	click	on	Send,	et	voila-it	says	Created	article:

Let's	now	go	back	to	Terminal	and	check	the	logs.	To	check	the	logs,	type	in	sls
logs	and	our	function	name,	createArticle:

We	can	see	in	the	logs	that	it	says	hello	world,	as	shown	in	the	following
screenshot:

Creating	more	functions
Alright.	Let's	create	some	more	functions.

First,	I	will	create	or	specify	the	functions	that	I	want	to	have.	I'm	going	to	create
an	API	for	reading	articles,	for	updating	articles,	and	for	deleting	articles,	as
shown	in	the	following	screenshot:

readArticle:

			handler:	articles/read.handler

			events:

					-	http:

									path:	articles

									method:	get

updateArticle:

			handler:	articles/update.handler

			events:

					-	http:

									path:	articles

									method:	put

deleteArticle:

		handler:	articles/delete.handler

		events:

				-	http:

								path:	articles

								method:	delete

You	also	need	to	create	the	files.	Create	three	separate	files	under	the	articles
files	serverless.js,	read.js,	and	update.js.

Now,	let's	go	back	to	the	create.js	file,	copy	the	code,	and	paste	it	into	the	read.js
file.	Once	this	is	done,	delete	the	following	from	the	read.js	file:

const	data	=	JSON.parse(event.body);

if	(data.text	&&	typeof	data.text	!==	'string')	{

				console.error('Validation	Failed');

				callback(new	Error('Body	did	not	contain	a	text	property.'));

				return;

}

For	now,	let's	simply	create	a	stub	because	you	can't	save	data	yet,	and	it	doesn't
really	make	sense	to	do	anything	else.	Rename	the	message	function	with
respect	to	the	filename.

In	the	read.js	file,	enter	the	following:

'use	strict'

module.exports.handler	=	(event,	context,	callback)	=>	{

			const	response	=	{

						statusCode:	200,

						body:	JSON.stringify({

								message:	'Read	article.'

						}),

			};

			callback(null,	response);

};	

In	the	update.js	file,	enter	the	following:

'use	strict'

module.exports.handler	=	(event,	context,	callback)	=>	{

			const	response	=	{

						statusCode:	200,

						body:	JSON.stringify({

								message:	'Update	article.'

						}),

			};

			callback(null,	response);

};

In	the	delete.js	file,	enter	the	following:

'use	strict'

module.exports.handler	=	(event,	context,	callback)	=>	{

			const	response	=	{

						statusCode:	200,

						body:	JSON.stringify({

								message:	'Delete	article.'

						}),

			};

			callback(null,	response);

};	

We	also	need	to	save	the	serverless.yml	file.

Alright.	Let's	deploy	our	service.

Once	deployed,	you	will	get	four	functions:

You	will	also	get	four	endpoints:

Make	sure	that	you	remove	the	CreateArticle	path	and	also	name	its	articles;	otherwise,	the
Management	Console	will	show	that	our	API	has	a	little	inconsistency.

Now	let's	check	the	AWS	Management	Console:

As	shown	in	the	screenshot,	we	have	a	DELETE,	GET,	POST,	and	PUT	method.	If	you
click	on	the	method,	it	also	shows	the	API	integration	with	our	Lambda	function.

In	the	next	section,	we	are	going	to	add	DynamoDB	to	our	backend	and	make	it
a	stateful,	serverless	application.

Creating	a	stateful	serverless	backend
with	DynamoDB
By	now,	you	will	know	how	to	create	a	stateless	web	application.	Now	we	are
going	to	add	a	database	to	our	backend.	For	this	purpose,	we	will	create	a
DynamoDB	database	table	and	then	use	the	DynamoDB	node.js	client	to	create,
read,	update,	and	delete	items.	We	will	then	add	this	functionality	to	our	little
blog	application.

So	let's	get	started.

Sign	in	to	the	AWS	Management	Console	(the	location	I	have	chosen	in	our
example	is	Frankfurt)	and	open	the	DynamoDB	dashboard.	Since	we	don't	have
a	DynamoDB	table	yet,	As	a	service	offering	DynamoDB	is	the	database.	Hence,
we	don't	need	to	manage	the	database	server	on	our	own.	You	can	use	the	web
dashboard	to	create	tables	by	clicking	on	the	Create	Table	button	and	going
through	the	wizard.	However,	before	that,	we	will	need	to	use	the	serverless
framework	to	programmatically	create	the	DynamoDB	table	for	us,	so	click	on
Cancel	for	now.

Go	to	the	editor	and	open	the	serverless.yml	file.	You	will	notice	that	there	will	be
a	section	where	you	can	specify	the	resources	that	will	be	provisioned	by	using
CloudFormation.	Replace	the	dummy	code	that	was	placed	with	the	code	that	you
prepare	as	follows:

resources:

				Resources:

									BlogTable:

													Type:	AWS::DynamoDB::Table

													Properties:

																		TableName:	BlogTable

																		AttributeDefinitions:

																						-	AttributeName:	article_id

																									AttributeType:	S

																KeySchema:

																					-	AttributeName:	article_id

																								KeyType:	HASH

															ProvisionedThroughput:

																				ReadCapacityUnits:	1

																				WriteCapacityUnits:	1

As	shown	in	the	preceding	screenshot,	I	am	creating	a	BlogTable	resource	for	us.
The	BlogTable	resource	is	of	the	DynamoDB	Table	type,	and	the	DynamoDB	Table	type
needs	a	couple	of	properties.	For	instance,	it	needs	a	TableName,	which	in	this	case
is	BlogTable.	We	have	also	specified	the	attributes—which	of	the	attributes	is	the
hash	key	and	which	one	is	the	range	key	(range	key	can	be	optional).	In	this
case,	the	hash	key	is	article_id.

The	hash	key	in	DynamoDB	is	something	like	a	primary	key	or	a	partition	key	that	you	might
know	from	other	databases.

Another	attribute	that	should	be	specified	is	ProvisionedThroughput,	which	can	help
in	determining	how	much	throughput	is	used,	and	can	also	determine	the	cost	of
the	DynamoDB	table.

To	learn	more	about	the	attributes,	read	the	DynamoDB	documentation.

Now	open	Terminal	and	go	into	the	service	directory.	Simply	type	sls	deploy	to
provision	our	DynamoDB	table:

As	you	can	see	from	the	preceding	screenshot,	the	deployment	has	been	finished,
and	we	can	now	switch	over	to	the	AWS	Management	Console	to	see	if	the	table
has	been	created.

You	will	now	see	that	a	BlogTable	is	present,	which	is	active	and	has	a	partition
or	hash	key,	which	are	synonyms	for	the	name	article_id.

For	the	next	step,	we	need	to	connect	our	application	to	the	DynamoDB	table
that	we	just	created.	For	this	purpose,	we	need	to	install	a	dependency,	the	AWS
SDK.

Create	a	package.json	file	via	npm	init	-y:

npm	init	-y

Then	install	the	dependency,	via	npm,	with	i	for	install	and	-save	so	it	gets	saved
in	the	package.json	file,	aws-sdk.

Once	the	dependency	has	been	installed,	we	will	be	able	to	see	the	node_modules
directory	with	the	aws-sdk	and	its	dependencies	.	We	will	also	see	that	the
dependency	has	been	added	to	our	dependencies	in	the	package.json	file.

We	will	now	go	to	the	create.js	file	and	connect	our	application	to	the
DynamoDB	table:

'use	strict';

	module.exports.handler	=	(event,	context,	callback)	=>	{

			const	data	=	JSON.parse(event.body);

					if	(data.text	&&	typeof	data.text	!==	'string'){

								console.error('Validation	Failed');

								callback(new	Error('Body	did	not	contain	a	text	property.'));

								return;

					}

				console.log(data.text);

				const	response	=	{

				statusCode:	200,

				body:	JSON.stringify({

				message:	'Created	article.'

				}),

		}

callback(null,	response);

};

You	will	notice	that	the	create	function	handler	just	sends	back	some	dummy
data,	a	hard-coded	response	with	an	HTTP	status	code	200,	and	the	JSON	in	the
body.	You	might	wonder	about	the	structure	of	the	response.	There	are	different
ways	to	integrate	API	Gateway	with	Lambda.	This	style	is	called	Lambda	proxy

and	it's	the	default	that	the	serverless	framework	currently	uses.	Using	this
integration	style,	you	can	specify	the	HTTP	and	the	HTTP	request,
programmatically.	You	could,	for	example,	also	add	HTTP	headers	or	other
things	programmatically.	This	is	much	more	convenient	than	doing	it	on	the
AWS	console,	which	you	would	need	to	do	if	you	want	to	use	the	plain	Lambda
style	instead	of	the	Lambda	proxy	integration	style.

The	first	thing	that	we	need	to	do	is	add	our	dependencies	to	the	create.js	file.	We
need	to	add	the	aws-sdk,	the	module	that	I	just	installed.	We	then	use	AWS	to
create	a	new	DynamoDB	client.	Since	DynamoDB	uses	different	clients,	we	will
use	the	document	client,	which	is	a	higher-level	client	that	is	easier	to	use,	more
convenient,	and	more	developer	friendly:

'use	strict';

const	AWS	=	require('aws-sdk');

const	dynamo	=	new	AWS.DynamoDB.DocumentClient();

module.exports.handler	=	(event,	context,	callback)	=>	{

					const	data	=	JSON.parse(event.body);

					if	(data.text	&&	typeof	data.text	!==	'string'){

									console.error('Validation	Failed');

									callback(new	Error('Body	did	not	contain	a	text	property.'));

									return;

						}

We	then	replace	the	console.log	statement	with	a	dynamo	request,	and	issue	a	put
request	to	create	a	new	item:

dynamo.put(params,	putCall)

const	response	=	{

			statusCode:	200,

			body:	JSON.stringify({

							message:	'Created	article.'

			}),

};

The	put	method	needs	two	arguments;	the	first	of	which	is	params	and	the	second
of	which	is	callback.	You	also	need	to	implement	the	params	and	the	callback.	You
can	look	up	the	DynamoDB	Node.js	SDK	documentation	on	how	to	do	that.

First	we	need	a	JSON	file	that	specifies	the	table	name	and	specifies	the	item.
For	now,	we	will	use	a	hard-coded	ID,	our	article_id,	and	give	the	second
attribute	the	text	that	is	retrieved	from	our	event.	The	second	thing	to	do	is
specify	putCallback.	To	do	this,	create	a	new	variable,	callback,	and	assign	the
method,	which	is	an	error-first	callback	function,	as	follows:

const	params	=	{

				TableName:	'BlogTable',

				Item:	{

								article_id	"1",

								text:	data.text

				},

};

const	putCallback	=	(error,	result)	=>	{

if	(error)	{

			console.error(error);

			callback(new	Error('Could	not	save	record.'));

			return;

}

If	there	is	an	error,	scroll	down	and	copy	the	following:

const	response	=	{

			statusCode:	200,

			body:	JSON.stringify({

							message:	'Created	article.'

			}),

};

callback(null,	response);

Once	you	have	copied	the	preceding	code,	prepare	the	response	that	should	be
sent	back	to	the	item	that	was	created	in	DynamoDB.	So,	instead	of	sending
back	the	object,	we	are	going	to	send	back	the	result.Item:

const	putCallback	=	(error,	result)	=>	{

				if	(error)	{

								console.error(error);

								callback(new	Error('Could	not	save	record.'));

								return;

				}

				const	response	=	{

								statusCode:	200,

								body:	JSON.stringify(result.Item),

				};

				callback(null,	response);

}

dynamo.put(params,	putCallback);

If	you	want	to	learn	more	about	the	structure	of	the	result,	you	can	log	it	out	on	the	console
and	view	it	by	entering	the	following:

console.log(result);

Now	let's	locally	invoke	our	createArticle	function	with	the	event.json	file,	as
shown	in	the	following:

This	returns	the	service	code	200,	and	if	we	switch	over	to	the	AWS	Management
Console,	we	can	see	that	the	Hello	World	item	has	been	created,	as	shown	in	the
following	screenshot:

However,	if	you	want	to	create	more	articles,	you	would	need	to	increase	or
change	the	article_id	number.	So	what	we	need	to	do	is	add	the	following
module:

npm	i--save	uuid

This	will	install	the	uuid	module,	which	can	be	imported	as	shown	in	the
following	screenshot:

const	AWS	=	require('aws-sdk');

const	dynamo	=	new	AWS.DynamoDB.DocumentClient();

const	uuid	=	require('uuid');

Once	done,	you	can	replace	your	hard	coded	article_id:

const	params	=	{

				TableName:	'BlogTable',

				Item:	{

								article_id:	uuid.v1(),

								text:	data.text

				},

};

The	way	the	ID	is	used	is	by	specifying	the	version	number	of	the	kind	of	uuid	that	you	want	to
create.

Now	switch	back	over	to	the	management	console	and	refresh	the	table.	You	will
notice	that	an	item	has	been	created	with	a	randomized	uuid,	as	shown	in	the
following	screenshot:

Alright,	it	seems	to	work.	But	does	it	actually	work	if	we	deploy	our	service?
Spoiler	alert:	it	won't.

Nevertheless,	we	will	deploy	the	service	as	it	is	currently	and	see	what	went
wrong	and	what	can	be	done	to	fix	it	if	you	run	into	the	same	error	later.

Switch	over	to	the	editor	and	deploy	the	service	via	sls	deploy:

sls	deploy

Once	the	service	has	been	deployed,	invoke	the	command	remotely.	You	will	run
into	an	error.	Try	getting	more	info	on	what	went	wrong.	Check	the	logs	as	well.
Scroll	up	the	logs	and	you	will	notice	the	following:

We	can	see	that	our	Lambda	function	is	actually	not	authorized	to	perform	the
PutItem	request	on	our	BlogTable	resource.	So	let's	fix	this.	Go	to	our	serverless.yml
file.	You	will	notice	that	you	can	add	IAM	statements	or	IAM	roles	to	your
service.

By	the	way,	this	is	supposed	to	change	in	serverless	framework	version	1.8.	So	if	you're	using
a	newer	version	of	the	serverless	framework,	please	head	over	to	the	serverless	website	and
check	out	the	documentation.

If	you	are	using	serverless	framework	1.7	or	earlier,	you	can	add	the	following
IAM	role	statements,	where	you	specify	which	kind	of	actions	you	want	to
perform:

provider:

		name:	aws

		runtime:	nodejs4.3

		stage:	dev

		region:	eu-centra-1

		iamRoleStatements:

		-	Effect:	Allow

				Action:

						-	dynamodb:	Query

						-	dynamodb:	GetItem

						-	dynamodb:	PutItem

						-	dynamodb:	UpdateItem

						-	dynamodb:	DeleteItem

				Resources:	"PUT_YOUR_ARN_HERE"

From	the	preceding	screenshot,	you	will	notice	that	our	resource	ARN	is
missing.	How	do	you	find	this?

Switch	over	to	the	AWS	Management	Console.	On	your	DynamoDB	table,
there's	a	tab	named	Overview.	Scroll	down	and	you	will	be	able	to	see	the
Amazon	resource	name.	Copy	the	name	and	replace	it	with	the	missing	ARN
name	in	the	serverless.yml	file.

Once	the	service	has	been	redeployed,	invoke	it:

As	you	can	see	in	the	preceding	code,	we	get	back	a	status	code	of	200.	When	we
check	the	table,	we	will	be	able	to	see	that	a	third	item	has	been	added,	as	shown

in	the	following	screenshot:

Before	we	move	on	to	implementing	the	read,	update,	and	delete	functions,	we
need	to	refactor	our	code	a	little	bit,	because	right	now,	the	persistence	business
logic	and	Lambda	function	code	is	all	tangled	together	and	should	be	separated.
If	you	want	to	use	test-driven	development,	write	unit	tests,	or	something
similar,	separating	the	business	logic	from	your	Lambda	function	can	come	in
quite	handy.

So,	let's	create	a	model.js	file:

'use	strict';

const	uuid	=	require('uuid');

class	Article	{

			constructor{id,	text)	{

							this.article_id	=	id;

							this.text	=	text;

			}

}

const	createArticle	=	(event,	callback)	=>	{

				validateAttributes(event,	callback);

				const	body	=	JSON.parse(event.body);

				const	id	=	uuid.v1();

				const	text	=	body.text;

				return	new	Article(id,	text):

}

const	readArticle	=	(event,	callback)	=>	{

				validateId(event,	callback);

				const	body	=	JSON.parse(event.body);

				const	id	=	body.article_id;

				return	new	Article(id);

}

const	updateArticle	=	(event,	callback)	=>	{

				validateId(event,	callback);

				validateAttributes(event,	callback);

				const	body	=	JSON.parse(event.body);

				const	id	=	body.article_id;

				const	text	=	body.text;

				return	new	Article(id,	text);

}	

As	you	can	see,	I	have	created	an	article	class	that	captures	the	properties	of	the
article.	Then	there	are	some	helper	methods,	such	as	createArticle,	that	transform
the	Lambda	function	event	and	callback,	and	use	these	in	a	validation	step,
which	will	then	create	an	article	object	and	return	that	article	object	using	the
event	information.	We	also	have	some	more	helper	functions	for	validating	our
event	and	throwing	an	error	if	the	validation	fails.	Then	we	export	our	article
class	and	the	create,	read,	update,	and	delete	methods.

One	more	layer	of	abstraction	that	I	want	to	add	is	a	data	access	object	for
DynamoDB.

I've	already	prepared	something	for	that.	I'm	going	to	create	a	new	subdirectory,
util,	and	in	that	subdirectory,	I	will	create	a	file	named	dynamo-dao.js.	Again,	we	just
copy	and	paste	the	source	code.	Don't	worry,	it's	all	in	the	repository;	you	can
look	it	up	there.

Basically,	what	we	are	going	to	do	is	wrap	the	DynamoDB	document	client	in	a
class	and	provide	some	higher-level	methods	that	take	the	model	as	an	input,	so
my	article	and	a	callback,	and	so	we	pass	in	our	callback	into	the	Dynamo
method,	such	as	a	put	method,	and	if	the	put	method	works	out	correctly,	we	call
our	callback	here.

We	would	pass	in	the	callback	from	our	Lambda	function	to	create	a	new	item.
One	more	thing	that	should	be	created	is	a	controller.	You	can	judge	for	yourself
whether	you	need	so	many	levels	of	abstraction,	or	if	fewer	levels	would	do.

Let's	create	a	new	file,	controller.js,	and	add	our	controller	code	here.	What	this
does	is	it	wraps	around	the	DynamoDB	data	access	object	and	wraps	or	performs
the	error	handling	so	that	we	have	it	in	the	main	code.	We	import	the	createArticle
method	from	my	model.js	file	and	import	DynamoDAO	and	the	controller.	The
way	we	use	them	is	to	use	the	createArticle	method	here	to	create	a	model	from
our	event.	By	using	my	callback,	if	there's	an	error,	I	can	send	the	error	to	my
callback	function.	Here,	I	am	creating	a	DynamoDAO	and	passing	in	the
Dynamo	client	from	up	here,	as	well	as	the	name	of	my	table,	which	is	BlogTable.
Then	I'm	creating	a	controller,	my	ArticleController,	passing	in	my	DynamoDAO.
Last	but	not	least,	I	invoke	the	createArticle	method	on	my	controller,	giving	it
my	model	and	my	callback	from	up	here.	The	delete	method	looks	very	similar
—deleteArticle.	Update	just	changes	to	updateArticle.	Now,	let's	deploy	our
service.

Once	deployed,	invoke	the	service.	Invoking	the	service	will	create	a	new	article
that	can	be	seen	when	you	switch	to	the	AWS	Management	Console,	and	you
will	see	an	article	with	the	name	Hello	Universe.

Let's	now	try	to	invoke	the	readArticle	method.	For	that,	you	need	to	specify	the
article_id.	Switch	to	the	AWS	Management	Console,	copy	one	of	the	article	IDs,
and	paste	it	into	the	event.json	file.	Invoke	the	readArticle	function	and	you	will
get	back	Hello	World.	Let's	try	updating.	Instead	of	Hello	World,	let's	replace	it
with	Hello	Universe,	and	instead	of	readArticle,	let's	use	updateArticle.	When	you
read	it	again,	you	will	notice	that	it	says	Hello	Universe.	And	last	but	not	least,
you	can	try	the	same	in	the	delete	article.	Go	back	to	the	table	and	refresh.	The
article	will	be	gone.

Creating	a	web	client
In	the	previous	section,	we	created	a	Cognito	pool	and	added	some	functionality
to	our	backend	to	retrieve	the	Cognito	identity	from	our	context	object.	Here,	we
will	create	a	web	frontend	for	our	application,	a	web	client.	We	will	first
generate	a	JavaScript	SDK	of	our	service	using	API	Gateway,	and	then	we	will
use	this	SDK	with	a	Cognito	client	in	a	simple	web	page.	Open	the	Amazon
Cognito	dashboard	from	the	AWS	Management	Console.	To	use	the	Cognito
site,	go	to	Services	and	type	in	Cognito.

Cognito	is	a	web	service	that	allows	you	to	manage	or	implement	sign-up	and
sign-in	functionality	for	your	application.	There	are	two	options	that	are
provided	on	the	Cognito	site:	Manage	your	User	Pools	and	Manage	Federated
Identities.	You	can	create	your	own	Cognito	pool	or	you	can	use	federated
identities	if	you	want	to	allow	your	users	to	authenticate,	for	example,	using	a
Facebook	or	Google	account.	It	also	allows	unauthenticated	identities.
Authorization	and	highly	customized	pools	can	be	a	bit	out	of	the	scope	of	this
section.	Instead,	we	will	focus	on	how	to	use	Cognito	IDs	to	identify	users
within	their	Lambda	functions.

So	now,	we	will	select	the	federated	identities	option	in	Cognito	to	create	a
Cognito	pool.	Click	on	the	Manage	Federated	Identities	button	and	give	the
Identity	pool	a	name	(in	this	example,	I	have	used	the	name	BlogPool).	Setting	up
authentication	providers	can	take	a	long	time,	so	we	will	use	unauthenticated
identities	by	clicking	on	Enable	access	to	unauthenticated	identities	and	creating
a	new	pool:

You	will	see	from	the	preceding	screenshot	that	what	has	been	created	for	us	is
an	IAM	role	that	is	connected	to	our	Cognito	pool,	so	you	can	specify	what
access	rights	or	access	permissions	the	users	get	that	are	identified	via	Cognito.
You	can	then	differentiate	between	the	unauthenticated	identities	and
authenticated	identities,	as	shown	in	the	preceding	screenshot.

Click	on	Allow	and	you	will	see	that	the	Cognito	pool	has	been	created	and	that
Amazon	has	provided	us	with	some	sample	data	that	we	can	use	with	source
code	on	various	platforms	such	as	JavaScript,	Android,	iOS,	and	other	platforms.
In	a	later	section,	we	will	use	these	code	snippets,	but	for	now,	let's	just	add	the
user	identification	functionality	to	our	Lambda	functions.

So	head	back	to	the	editor	and	update	the	model.js	file,	because	the	user	that
created	and	updated	the	articles	must	be	identified:

const	uuid	=	require('uuid');

class	Article{

			constructor(id,	user_id,	text)	{

								this.article_id	=	id;

								this.text	=	text;

								this.user_id	=	user-id;

			}

}

const	createArticle	=	(event,	context,	callback)	=>	{

				validateAttributes(event,	callback);

				const	body	=	JSON.parse(event.body);

				const	id	=	uuid.v1();

				const	text	=	body.text;

				const	user-id	=	context.identity.cognitoIdentityId;

				return	new	Article(id,	user_id,	text);

}	

We	will	add	a	new	property,	user_id,	to	the	constructor.	The	user	ID	can	be	taken
from	Cognito.	We	will	access	an	object	that	we	haven't	used	so	far-the	context
object.	If	our	Lambda	function	has	been	called	for	a	request	that	is	authenticated
or	that	uses	the	Cognito	pool	for	identification,	then	the	context	object	will	have
an	identity	property	named	cognitoIdentityId.	Once	this	is	done,	add	it	to	our
constructor.	We	also	do	the	same	with	the	updateArticle	method.	The	deleteArticle
and	readArticle	methods	can	stay	as	they	are,	but	we	now	need	to	invoke	our
createArticle	method	differently:

'use	strict';

const	AWS	=	require('aws-sdk');

const	dynamo	=	new	AWS.DynamoDB.DocumentClient();

const	createArticle	=	require('./model.js').createArticle;

const	DynamoDAO	=	require('../util/dynamo-dao.js');

const	ArticleController	=	require('./controller.js');

module.exports.handler	=	(event,	context,	callback)	=>	{

				const	article	=	createArticle(event,	context,	callback);

				const	dynamoDAO	=	new	DynamoDAO(dynamo,	'BlogTable');

				const	controller	=	new	ArticleController(dynamoDAO);

				controller.createArticle(article,	callback);

};

	

The	same	applies	for	our	update	method:

'use	strict';

const	AWS	=	require('aws-sdk');

const	dynamo	=	new	AWS.DynamoDB.DocumentClient();

const	updateArticle	=	require('./model.js').updateArticle;

const	DynamoDAO	=	require('../util/dynamo-dao.js');

const	ArticleController	=	require('./controller.js');

module.exports.handler	=	(event,	context,	callback)	=>	{

				const	article	=	updateArticle(event,	context,	callback);

				const	dynamoDAO	=	new	DynamoDAO(dynamo,	'BlogTable');

				const	controller	=	new	ArticleController(dynamoDAO);

				controller.updateArticle(article,	callback);

};

	

Let	us	now	deploy	the	frontend	to	CloudFront	and	then	try	out	the	full	stack
application.

Deploying	a	serverless	frontend	on
CloudFront
We	are	going	to	take	a	look	at	deploying	our	serverless	application	frontend	to
Amazon	S3.	Then	we	will	deploy	our	frontend	to	edge	locations	on	CloudFront.
Last	but	not	least,	we	will	benchmark	the	latency	of	our	frontend.

So	let's	get	started!

Create	an	S3	bucket	named	sls-frontend	in	the	S3	dashboard	on	the	AWS
Management	Console.	To	upload	data	to	the	bucket,	click	on	the	Upload	button
and	drag	your	local	web	directory	into	the	bucket:

As	you	can	see	from	the	previous	screenshot,	once	the	files	are	uploaded,	we
need	to	specify	that	our	bucket	is	used	for	static	website	hosting,	so	we	enable
website	hosting,	set	it	as	an	index	HTML	document,	and	click	on	Save:

We	also	need	to	get	some	permissions	so	that	our	website	will	be	accessible	from
the	internet	and	other	users	will	be	able	to	access	it.	We	specify	that	S3:GetObject
actions	are	allowed	on	our	bucket	where	we	host	our	frontend.	Click	on	Save:

Click	on	the	link	provided	in	the	endpoint	to	check	if	it's	working.	If	it's
working,	then	you	should	see	the	following:

As	seen	in	the	preceding	screenshot,	the	website	will	say	Hello	World.

Take	a	look	at	the	developer	console	and	you	will	notice	the	response	from	the
create	object	request	that	we	make.

Take	a	look	at	the	speed	test	of	our	website:

You	will	notice	that,	not	surprisingly,	the	performance	in	Europe	is	quite	good
compared	to	other	locations.

There	are	also	some	errors.	These	arise	because	the	permissions	have	not	been
updated	in	the	other	regions	yet,	which	is	a	process	that	can	take	a	little	more
time	in	different	regions	around	the	globe.	As	a	result,	some	of	these	tests	failed

because	the	web	clients	couldn't	access	the	S3	bucket	yet.	You	will	also	notice
that	the	repeated	visit	is	considerably	faster,	but	it's	still	not	quite	what	we	want
right	now.	Let's	try	to	improve	that:

What	we	are	going	to	do	is	create	a	CloudFront	distribution	that	will	replicate
the	bucket	content	in	different	geographic	locations	around	the	world.	As	seen	in
the	preceding	screenshot,	click	on	the	Create	Distribution	button,	click	Get
Started,	and	then	select	the	bucket	where	we	have	hosted	our	web	client,	leaving
the	other	values	at	their	default	values.	We	need	to	use	all	edge	locations.	If
needed,	we	can	also	select	a	subset	of	edge	locations.	It	will	take	a	little	bit	of
time,	but	after	that,	we	can	perform	our	performance	test.

One	last	configuration	is	to	specify	the	default	root	object,	which	is	our	index	HTML	file.

Now	access	the	CloudFront	distribution	at	this	domain	name.	We	can	also	use	it
for	our	speed	testing	experiment.	Now	look	at	the	performance:

This	time,	our	repeated	speed	test	using	the	CloudFront	distribution	endpoint
shows	that	performance	has	significantly	improved	in	at	least	some	regions.	In
particular,	if	we	look	at	the	United	States,	the	latency	is	much	better	than	it	was
before.

There	are	still	some	errors,	indicating	that	our	permission	updates	have	not
propagated	to	all	regions	yet,	and	there	are	some	regions	where	we	have	really
long	latency,	so	we	would	need	further	investigations	to	find	out	why	that	is	the
case,	or	maybe	give	the	CloudFront	distribution	a	little	bit	more	time	to	replicate
around	the	world.

Summary
In	this	chapter,	we	built	our	first	serverless	application.	We	used	Lambda
functions	for	implementing	business	logic,	DynamoDB	for	data	persistence,
Cognito	for	user	identification,	and	CloudFront	for	serving	the	frontend.	In	the
next	chapter,	you	will	learn	how	to	program	Lambda	using	other	programming
languages,	in	particular	Java,	Python,	and	C#.

	

Programming	AWS	Lambda	with
Java
Welcome	to	Chapter	4,	Programming	AWS	Lambda	with	Java.	In	this	section,	we
are	going	to	take	a	look	at	using	Eclipse	and	the	AWS	Eclipse	plugin.	Then	we
will	program	our	first	Lambda	functions	with	Java.	And,	last	but	not	least,	we
will	build	a	simple	serverless	application	using	Java.	Now	let's	move	on	to	the
first	video	where	we	get	started	with	Eclipse	and	the	AWS	Eclipse	plugin.

In	this	chapter,	we	are	going	to	take	a	look	at	the	following:

Using	Eclipse	and	the	AWS	Eclipse	plugin
Programming	Lambda	functions	with	Java
A	simple	application	with	Java	Lambda	functions

So	let's	dive	in!

Getting	started	with	Eclipse	and	the	AWS	Eclipse	plugin

From	this	section,	you	will	learn	how	to	install	the	AWS	Eclipse	plugin,	and	also
try	out	some	of	its	features.	You	will	also	use	the	plugin	to	create	our	first	Java
Lambda	function.

To	find	more	information	about	the	AWS	Toolkit	for	Eclipse,	go	to	the	site	of	the
AWS	documentation,	which	is	the	open	source	plugin	for	the	Eclipse	IDE.	Once
you	open	the	site,	go	over	to	the	left	and	click	on	Getting	Started	and	Set	up	the
Toolkit.

There,	you	will	find	more	information,	including	that	you	need	an	AWS	account,
you	need	to	install	Java,	and	so	on.	But	if	you	have	already	installed	Java	and	if
you're	already	using	Eclipse,	then	all	you	need	to	do	is	copy	the	link	https://aws.a
mazon.com/eclipse.

Open	your	Eclipse	IDE.	If	you	have	never	installed	an	Eclipse	plugin	before,
there	should	be	a	menu	action	in	the	menu	bar	that	says	Install	New	Software.

https://aws.amazon.com/eclipse

For	macOS,	it's	under	Help,	but,	depending	on	the	operating	system,	it	could	be
somewhere	else.	So,	find	the	Install	New	Software	menu	item	and	then	enter	the
URL	that	was	copied	previously,	as	shown	here:

From	the	previous	screenshot,	you	will	find	that	the	AWS	Toolkit	for	Eclipse
consists	of	a	bunch	of	plugins	for	different	AWS	services.	What	we	need	in	this

case	is	the	Core	plugin,	so	select	the	AWS	Toolkit	for	Eclipse	Core	under	the
AWS	Core	Management	Tools.	We	also	need	to	use	the	AWS	deployment	tool
for	Lambda,	so	select	AWS	Lambda	Plugin	under	the	AWS	Deployment	Tools.

For	now,	the	other	plugins	are	not	really	needed.	Once	selected,	click	on	Next.
This	will	calculate	the	dependencies,	which	should	be	fine	to	install.	Currently,
we	am	using	the	Eclipse	for	Java	EE	Neon	2	version	of	Eclipse,	but	it	should
work	similarly	on	all	major	new	versions	of	Eclipse.	So,	click	on	Next,	accept
the	license	agreement,	and	click	on	Finish.	After	the	software	has	been	installed,
we	just	need	to	restart	Eclipse.	Once	the	Eclipse	IDE	has	restarted,	you	should
see	a	little	orange	box,	as	shown	here:

This	box	will	give	you	more	information	on	how	to	use	the	AWS	Toolkit	for
Eclipse	if	you	click	on	it.

Click	on	the	little	drop-down	arrow	and	create	a	new	AWS	Lambda	Java	project:

For	now,	set	the	Project	Name	as	demo.	You	can	also	see	that	we	have	a	group	ID
and	artifact	ID,	which	is	used	for	Maven.	And	then,	at	the	bottom,	you	can	see
that	the	wizard	helps	us	to	generate	some	boilerplate	code.

Let's	change	the	default	configuration	a	little	bit.	You	can	choose	a	different
handler	type	if	you	want	to	operate	on	a	stream,	but	for	now	let's	leave	it	with	a
request	handler.	We	could	choose	a	different	input	type.	For	a	first	simple
example	application,	let's	use	the	custom	input	type.	You	can	see	that	the	code
shown	in	the	preview	that	is	generated	from	our	configurations	changes.	As
input	type,	we	could	use	a	plain	old	Java	object,	but	we	could	also	use	something
such	as	a	string	or	an	integer.	So,	let's	use	Input	Type	and	Output	Type	as	String,
so	we	can	build	a	really	simple	hello-world	application.	Let's	click	on	Finish.

When	we	have	created	our	AWS	Lambda	Java	project,	there	will	be	more
information	on	how	to	get	started.	But,	in	our	example	IDE	configuration,	there
are	a	couple	of	problems	that	are	pointed	out,	as	follows:

These	errors	might	not	even	happen	in	your	case,	but,	in	case	they	appear,	let's
see	on	how	to	fix	them.

In	the	preceding	screenshot,	the	problem	is	that	the	build	path	was	not
configured	correctly.	The	reason	is	because	of	using	the	outdated	Java	version
1.5.	We	need	to	change	that.	So,	go	to	the	project	explorer	tab,	click	on	demo,
and	go	to	demo	|	Build	Path	|	Configure	Build	path:

As	shown	in	the	preceding	screenshot,	you	will	see	that	Java	version	is	1.5,	so
change	it	by	clicking	on	Add	Library.	Choose	a	different	JRE	system	library,
namely	Java	SE8,	and	click	on	Finish.	Once	done,	remove	the	Java	1.5	and	click
on	OK.

This	has	not	solved	all	the	problems	yet.	We	also	need	to	make	sure	that	the
project	properties	are	set	correctly.	So,	go	back	to	the	Build	Path	and	go	to	the
Java	Compiler:

In	the	preceding	screenshot,	you'll	notice	that	the	compliance	level	is	set	to	Java
1.8,	but	we	need	to	use	Java	1.8.	Click	on	OK	and	rebuild.	This	will	remove	all
the	errors.

OK,	let's	take	a	quick	look	at	the	LambdaFunctionHandler:

So,	as	shown	here,	what	has	been	auto-generated	for	us	is	a	class,	which	is	a
Java	class	with	the	name	LambdaFunctionHandler	that	implements	the	request	handler
interface,	using	a	string	as	both	input	and	output.	A	context	object	can	also	be
accessed.	Right	now,	our	Lambda	function	handler	is	pretty	simple.	There	is	the
handleRequest	function,	which	takes	two	parameters,	a	string-type	input,	and	the
context	object,	which	just	logs	out	the	input.	There	is	also	a	TODO,	which
implements	your	handler.	Right	now,	it	just	returns	null.	If	we	return	an	integer,
it	won't	compile	because	the	handler	function	is	supposed	to	return	a	string.	Now
we	are	going	to	deploy	and	test	the	Lambda	function	that	we	have	just	created.

Deploying	and	Testing	AWS	Lambda
Functions
Now	you	know	how	to	create	a	Lambda	function	using	Eclipse,	we	are	going	to
deploy	and	test	our	function.

First,	we	will	set	up	our	Eclipse	IDE	with	AWS	credentials	so	that	we	can	access
AWS	from	within	Eclipse.	Then	we	will	deploy	and	run	our	Lambda	function
from	within	Eclipse.	And,	last	but	not	least,	we	will	take	a	look	at	the	Lambda
function	on	our	AWS	Management	Console.

Go	back	to	the	Eclipse	IDE.	The	first	thing	that	we	need	to	check	before	we	can
upload	and	run	our	Lambda	function	is	if	Eclipse	has	access	credentials	to	access
AWS.	So,	open	the	Preferences	and	you	can	see	on	the	left-hand	side	there	is	an
item	for	AWS	Toolkit,	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	preceding	screenshot,	the	Toolkit	is	set	up	with	the	default
AWS	profile,	including	the	access	key	ID	and	the	secret	access	key.

If	you	have	set	up	an	AWS	credentials	file	on	your	local	file	system,	Eclipse	will	take	the
information	from	that	file.	Otherwise,	you	need	to	enter	it.	Please	go	back	to	the	install	and
setup	guide	if	this	has	not	been	set	up	for	your	Eclipse	IDE.

Now	let's	deploy	our	Lambda	function.	Go	to	the	demo	project	folder	and	click	on
Amazon	Web	Services,	as	shown	here:

You	can	see	that	there	are	three	different	options:	deploying	the	project,	running
a	function,	and	Upload	function	to	AWS	Lambda.

The	first	thing	that	we	need	to	do	is	upload	our	function	to	Lambda:

Select	the	region	and	name	the	function	MyJavaFunction.

Click	on	Next.

As	shown	in	the	preceding	screenshot,	there	are	some	more	configurations	that
can	be	made,	such	as	the	IAM	role,	where	you	can	use	the	Lambda	basic
execution	role	or	you	can	create	a	new	role.	You	can	select	a	bucket	where	you
want	to	store	the	function	codes	for	the	Java	class	files	and	dependencies,	and
also	select	how	much	memory	you	want	to	give	the	Lambda	function.	For	now,
let's	go	over	to	default	settings	and	click	on	Finish.	This	will	upload	the	code	to
the	S3	bucket	to	create	the	new	Lambda	function.

Once	the	Lambda	function	has	been	uploaded,	run	it.	Go	to	AWS	Web	Services
and	click	on	the	option	Run	Function	on	AWS	Lambda.	We	need	to	enter	some

input	and	invoke	the	function.	So,	let's	enter	a	JSON	input	and	then	invoke	the
Lambda	function.	The	function	that	we	have	created	expects	a	string	as	input,	so
give	it	a	string	and	click	on	Invoke.	What	you	will	see	is	that	our	function	output
is	Hello	World,	as	shown	here:

Now	let's	move	on	to	the	AWS	Lambda	dashboard	on	the	AWS	Management
Console:

As	you	can	see	in	the	preceding	screenshot,	the	MyJavaFunction	Lambda
function	has	been	added	using	Java	8	at	runtime.	If	you	click	on	the	function,
you	can	see	some	more	information,	such	as	configuration	details,	triggers,	and
monitoring	data.	You	can	also	see	the	logs	by	clicking	on	View	logs	in
CloudWatch:

As	you	can	see	in	the	preceding	screenshot,	there	is	a	new	log	stream	for	the
Lambda	function	and	it	also	states	Input:	random	string.

Now	let's	access	the	context	object	and	return	some	of	the	runtime	information
of	our	Lambda	function.	Go	back	to	the	Eclipse	IDE	and	edit	the	code	to	access
the	context	object.	For	example,	we	could	return	the	remaining	time	in
milliseconds.	This	is	an	integer,	so	let's	make	it	into	a	string,	as	shown	here:

Next,	we	run	our	function	again,	and,	since	our	code	has	changed,	it	must	first
upload	the	new	function	code	to	MyJavaFunction:

Now	the	function	has	been	invoked,	and,	as	you	can	see,	the	remaining	time	in
milliseconds	is	14,976	milliseconds.	So,	our	default	configuration	of	the	Lambda
function	is	15	seconds.

Let's	now	to	build	a	slightly	more	complex	Lambda	function	that	takes	an	S3
event	as	input.

Lambda	Function	with	S3	Event
Input
Previously,	we	created	a	synchronous	Lambda	function	that	takes	the	string	as
input	and	returns	the	string	as	output.	Now,	we	are	going	to	create	an
asynchronous	Lambda	function	that	can	be	invoked	through	S3	events,	and	test
the	function	with	a	dummy	event	that	can	upload	a	file	to	S3	and	see	if	the
function	is	triggered	by	the	create-object	event.

Open	the	project	that	we	have	created.	Let's	add	a	new	Lambda	function	handler
to	the	project.	Click	on	the	little	orange	box	and	select	New	AWS	Lambda
Function.	We	will	create	a	new	function	handler	name,	S3FunctionHandler;	use	the
default	input	type	that	is	already	selected,	S3	Event;	and	as	leave	the	output	type

as	object:	

Click	on	Finish.	This	will	create	some	boilerplate	code	with	the	Lambda
function	handler	that	takes	an	S3	event	as	input:	

Let's	deploy	the	new	function.	Right	click	on	demo	and	go	to	Amazon	Web
Services	|	Upload	function	to	AWS	Lambda.

You	will	notice	that	the	region	is	still	EU	Central	in	Frankfurt,	but,	instead,	we
create	a	new	Lambda	function,	MyS3JavaFunction.	Click	on	Next.	There	will	be	two
Lambda	function	handlers.	Since	we	don't	want	to	deploy	the	same	Lambda
function	as	before,	let's	deploy	the	new	function	handler	that	we've	just	created.
Select	S3FunctionHandler	and	select	an	IAM	Role:	

Click	on	Finish	to	upload	the	code.

Once	the	code	has	been	uploaded,	we	switch	over	to	the	AWS	Management
Console	to	test	our	Lambda	function	with	a	dummy	S3	event.	You	will	notice
that,	on	the	Management	Console,	we	have	selected	MyS3JavaFunction.	We
need	to	test	it,	so	to	do	this	let's	configure	a	test	event.	Select	the	S3	Put	event,
which	you	find	by	clicking	on	the	Actions	tab.	This	simulates	somebody
uploading	a	new	object	to	an	S3	bucket.	Click	on	Save	and	Test.	The	Lambda
function	returns	null	and	the	log	output	here	is	the	S3	event,	as	follows:	

When	you	go	back	to	the	Eclipse	IDE,	you	will	see	that	the	input	event	is	not
very	verbose.	We	need	to	give	out	some	more	information	about	our	S3	event.
Make	the	console	output	a	little	bit	more	verbose	by	replacing	the	code	with	the
following:	

We	need	to	iterate	over	the	records,	which	are	of	the	type
S3EventNotificationRecord.	Then	we'll	output	some	information,	such	as	the
event	name,	the	event	source,	and	the	object	that	has	triggered	the	event.	Now
let's	update	our	code	by	choosing	the	same	function	as	before,	by	clicking	Next
and	Finish	to	upload	the	code.	Once	the	function	has	been	updated,	we	will	head
back	to	our	AWS	Management	Console.

Go	to	the	AWS	Lambda	dashboard	and	click	on	the	Test	button	again.

As	you	can	see,	it	uses	the	same	dummy	event	from	before	and	the	log
statements	can	be	seen;	for	example,	the	event	name,	which	is	the	ObjectCreated
event	of	type	put.	The	Event	Source	is	S3	and	the	object	key	is	HappyFace.jpg.

So	now	we	know	that	the	Lambda	function	can	process	S3	events.	How	about
testing	it	with	a	real	S3	event?

Click	on	the	Triggers	tab	and	add	a	new	trigger	to	our	Lambda	function.	You	can
select	from	a	number	of	triggers,	but	we	want	to	choose	the	S3	trigger.	Let's	use
the	S3	bucket	that	has	been	created	previously.	If	you	don't	have	an	S3	bucket
yet,	create	a	bucket	and	then	we'll	test	our	Lambda	function	with	events	in	the
bucket.	We	can	also	specify	which	type	of	events	we	want	to	trigger	our	Lambda
function.	We	will	go	for	Object	Created	events	and	click	on	Submit.	This	will
create	a	trigger	for	the	Lambda	function,	as	shown	here:	

Let's	go	to	the	S3	dashboard,	upload	a	file	into	our	S3	bucket,	and	then	check	if
we	can	see	the	metadata	of	the	file	that	we	have	uploaded	in	the	log	statements
of	our	Lambda	function.

Go	to	the	S3	dashboard	and	upload	a	file	into	the	bucket	that	has	the	created
trigger.	Once	the	file	has	been	uploaded,	take	a	look	at	the	Lambda	log.	Go	back
to	the	dashboard	of	the	Lambda	function,	and	click	on	Monitoring	and	View	logs
in	CloudWatch.	As	you	can	see	in	the	following	logs,	we	have	our	dummy	event,
the	HappyFace.jpg	file,	but	we	also	have	the	Smiling-Cat.jpg	that	we	have	just
uploaded:	

As	you	can	imagine,	you	can	do	a	lot	of	things	with	the	Lambda	function	using	triggers.	For
example,	we	could	process	the	JPEG	file,	transform	it	into	a	thumbnail,	store	that	thumbnail
into	another	S3	bucket,	and	then	load	it	onto	your	Web	page	to	load	faster.	As	you	can
imagine,	you	could	do	a	lot	of	things	with	this	Lambda	function.

Creating	a	Simple	Serverless	Java
Project
Now	we	will	create	a	serverless	project	that	uses	Lambda	functions	in
combination	with	other	AWS	services.	For	this	purpose,	we	are	going	to	use	the
AWS	Toolkit	plugin	in	Eclipse	to	create	a	serverless	project	from	a	project
blueprint.	We	will	take	a	look	at	the	source	code	and	template	files	that	are
created	in	this	project,	and	then	we	will	deploy	and	test	the	application.

Open	the	Eclipse	IDE	and	click	on	the	little	orange	AWS	icon	to	create	a	new
AWS	serverless	project.	Let's	give	it	the	project	name	JavaBlog	and	select	the
article	blueprint.	You	can	have	a	look	at	the	files	that	have	been	created	for	in	the
JavaBlog	project,	as	shown	here:

As	you	can	see,	there	are	two	articles:	GetArticle	and	PutArticle.	Let's	have	a	look
at	the	put	article	Lambda	function	first:

As	you	can	see	in	the	previous	comments,	the	Lambda	function	is	supposed	to
be	created	by	a	HTTP	post	request	through	an	API	Gateway.	We'll	read	the
metadata	from	our	HTTP	request	and	store	that	metadata	in	a	DynamoDB	table
record.	Then	we'll	take	the	payload	from	our	post	body	and	store	the	payload	in	a
S3	object	in	a	S3	bucket.	The	table	name,	the	table	schema,	the	bucket	name,
and	so	on	are	specified	here:

If	we	scroll	down	to	the	Lambda	function	handler,	we	can	see	that	it	takes	an
object	of	type	serverlessInput	as	input.	And,	in	return,	it	expects	a	serverlessOutput
object,	which	you	can	see	in	the	following	screenshot:

These	objects	basically	wrap	around	the	HTTP	requests.	For	example,	in	the
ServerlessInput,	our	input	has	a	body	of	headers,	queryStringParameters,	and	so	on:

So,	let's	go	back	to	the	put	article	Lambda	function	handler	and	see	what	it	does:

The	first	things	that	you	can	see	in	the	preceding	screenshot	are	the	instantiated
DynamoDB	client	and	Amazon	S3	client.	We	already	prepared	the
ServerlessOutput	object	that	we	return	through	our	synchronous	function	location:

Then	we	create	a	random	UUID,	which	we	use	as	a	key	name	for	our	S3	object
that	we	create	to	start	the	payload:

We	read	the	payload	from	our	serverlessInput	object,	which	we	retrieve	in	the
function	handler,	and	we	execute	an	S3	PutObject	request	with	our	article	bucket
name,	which	we	set	up	using	environment	variables.	We	use	the	key	name	with
the	randomly	generated	UUID,	and	as	input	content	we	read	a	ByteArrayInputStream
from	the	content	that	we	have	retrieved.

So,	in	the	previous	piece	of	code,	we	store	an	object,	which	is	the	payload	of	our
HTTP	post	body,	in	S3	as	a	new	object.

We	also	store	or	create	a	new	Dynamo	DB	record	using	a	PutItem	request,	as
shown	here:

The	PutItem	request	is	performed	on	a	DynamoDB	table.	The	table	name	is
specified	using	environment	variables,	and	the	attributes	are	specified	as	shown
in	the	previous	screenshot.	The	attributes	specify	our	hash	key,	which	is	the	table
ID.	The	previous	piece	of	code	will	set	a	randomly	generated	ID.	We're	using	a
string	type,	and	we	reference	our	S3	bucket	and	the	key	of	our	S3	object	that	we
store	in	the	bucket.	So,	in	our	DynamoDB	table	record,	you	reference	the
payload	that	we	have	stored	in	Amazon	S3.

If	we	scroll	down	after	we	return	these	two	requests,	we	set	the	status	code	on
our	ServerlessOutput	object	and	set	the	body	as	a	successfully	inserted	article,	as
shown	here:

If	you	take	a	look	at	the	GetArticle	function,	you	will	notice	that	that	the	GetArticle
function	is	supposed	to	be	triggered	through	an	HTTP	get	event,	and	it	reads	the
query	parameter	ID,	retrieves	the	content,	returns	the	content	that	we	have	stored
in	our	S3	bucket	as	a	new	object,	and	returns	that	as	payload	in	our	HTTP
response.

Now,	if	we	validate	our	input	as	shown	in	the	following,	we	expect	to	have	a
query	parameter	that	contains	the	article	table	ID	name,	which	is	id,	and	if	it	is
not	set,	we	throw	an	exception:

If	the	query	parameter	is	set,	then	we	use	it	to	query	our	DynamoDB	table	and
we	retrieve	our	item	from	our	DynamoDB	record	at	that	ID:

We	retrieve	the	key	of	our	S3	object	from	the	item	that	has	been	returned
through	our	DynamoDB	GetItem	request:

Once	the	content	has	been	retrieved,	set	that	content	in	the	serverless	output.
Another	important	file	that	has	been	generated	with	our	serverless	project	is	the
serverless.template	file:

Let's	take	a	look	at	what	we	find	in	the	previous	code	in	detail.	For	our
application	to	work,	besides	our	Lambda	functions,	we	also	need	an	S3	bucket
and	we	need	a	DynamoDB	table.	You	will	be	able	to	see	some	parameters	that
specify	the	name	of	our	S3	bucket,	the	name	of	our	DynamoDB	table,	and	the
configurations	of	our	DynamoDB	table.

Below	the	template,	we	can	see	some	resources	that	get	set	up	through	this
template:

First,	the	GetArticle	Lambda	function	and	the	Lambda	function	have	a	policy	that
allows	our	Lambda	function	to	read	from	the	DynamoDB	table	and	our	S3
bucket.	So,	we	restrict	these	policies	to	our	table	and	our	bucket	in	the
application,	as	shown	in	the	following:

Now	the	PutArticle	function	has	full	DynamoDB	access	and	full	Amazon	S3
access:

For	a	production	application,	you	might	want	to	restrict	these	access	rights	a	little	bit	further.

Further	down,	we	can	see	our	resource,	which	specifies	our	DynamoDB	table
using	the	parameters	that	we	have	defined	previously:

And,	finally,	we	can	see	our	ArticleBucket,	which	is	using	the	parameters	defined
previously:

OK,	now	let's	upload	our	serverless	project	by	right-clicking	on	JavaBlog	and
going	to	the	Amazon	Web	Services	|	Deployed	Serverless	Project	button.	In	this
book,	we	are	deploying	it	in	the	EU	Central	region	in	Frankfurt.	This	will	create
a	CloudFormation	stack	with	the	stack	name	JavaBlog-devstack,	and	then	the
CloudFormation	stack	will	be	used	to	provision	the	AWS	resources,	maybe	to
Lambda	functions,	the	DynamoDB	table,	and	the	S3	bucket,	with	the	appropriate
policies.	Click	on	Finish.

As	you	can	see	in	the	preceding	screenshot,	our	serverless	application	is	being
created	using	the	CloudFormation	stack.

Now,	before	we	deploy	our	serverless	project,	we	need	to	change	one	thing
because	all	S3	bucket	names	are	shared	in	the	global	namespace.	So,	we	need	to
change	this	bucket	name	to	something	else	because	some	other	person	who	uses
the	AWS	Toolkit	plugin	might	have	already	created	this	bucket,	so	we	might
want	to	avoid	that.	For	now,	we	just	create	a	random	string	of	numbers	and	hope
that	nobody	else	has	used	this	bucket	name	yet:

So	don't	use	the	exact	numbers	given	here,	use	something	random.

Once	you	enter,	click	on	the	Java	blog	and	Deploy	Serverless	Project.	Select	the
AWS	region	and	use	JavaBlog-devstack	as	a	CloudFormation	stack	name.	Click
on	Finish:

Now	the	Lambda	function	code	has	been	uploaded	to	S3	and	our	serverless
CloudFormation	template	is	used	to	create	the	stack	of	resources	that	we	need-
the	Lambda	functions,	GetArticle	and	PutArticle	functions,	the	DynamoDB	table,
the	S3	bucket,	and	the	respective	IAM	policies-so	that	our	Lambda	functions	are
able	to	access	DynamoDB	and	its	three	or	four	read	and	write	operations,
respectively.

As	you	can	see	in	the	preceding	screenshot,	our	Lambda	functions	and	the	IAM
roles	of	our	Lambda	functions	have	been	created.	Now	our	Lambda	functions
are	provisioned.	Our	API	Gateway	is	set	up.	We	have	set	the	permissions.	So,
basically,	all	the	AWS	resources	specified	in	our	serverless.template	file	are	used
to	set	up	and	configure	our	application.

If	your	provisioning	process	has	failed,	please	make	sure	that	you	change	the	bucket	name;
otherwise,	it	will	fail	and	the	error	message	will	say	something	like	this	bucket	already	exists.

OK,	now	let's	head	over	to	the	AWS	Management	Console.	Open	the	AWS
Management	Console	and	on	the	dashboard	of	CloudFormation,	if	you	scroll	further
down,	there	is	a	new	stack,	JavaBlog-devstack,	which	has	just	been	created	through
Eclipse:

If	you	click	on	that,	you	can	see	the	same	information	that	we	have	in	Eclipse.
The	operations	are	processed	based	on	our	template.	We	can	also	see	the
template	file	that	was	used.	Let's	take	a	quick	look	at	the	resources	that	we	have
provisioned	using	CloudFormation,	then	let's	try	it	out:

On	the	API	Gateway	dashboard,	you	can	see	that	two	HTTP	endpoints	have	been
created	for	get	and	for	post	requests,	and	they	are	integrated	with	our	Lambda

functions.	If	you	click	on	them,	then	you	can	see	the	Lambda	function	that	has
been	deployed,	as	shown	in	the	following	screenshot:

If	you	go	to	DynamoDB,	you	can	see	a	new	table,	serverless-blueprint-article-
table.

There	are	no	items	stored	yet.	If	you	go	to	S3,	you	can	also	see	the	S3	bucket
that	has	been	created.

Go	back	to	the	API	Gateway.	You	will	see	the	URL	endpoint	that	we	can	use	to
test	our	application,	using	Postman.	Open	Postman,	paste	the	URL	from	our
endpoint,	and	select	the	post	method.	We'll	make	the	first	request	by	using
simple,	plain	text,	Hello	World,	and	pressing	Send:

Now	as	you	can	see	in	the	previous	screenshot,	we	get	back	a	message	that	looks
like	an	error,	but,	actually,	if	we	take	a	look	at	the	raw	message,	it	says

successfully	inserted	article	at	ID.	So	let's	do	a	get	request	using	that	ID:

This	will	return	our	Hello	World	text.	Let's	try	another	attachment	for	binary,
maybe.	Attach	a	JPEG	file	to	your	request,	which	will	create	another	entry	in
DynamoDB	and	S3.	Let's	retrieve	it:

Now,	if	we	take	a	look	on	our	AWS	Management	Console,	we	can	see	two
records	have	been	written	into	DynamoDB	which	reference	the	payload	in	our
S3	bucket.	And	if	we	look	in	the	S3	bucket,	then	we	can	see	two	objects,	as
shown	here:

One	is	the	Hello	World	string	and	the	other	is	the	JPEG	file.

If	we	go	back	to	the	CloudFormation	dashboard,	we	can	take	another	look	at	our
CloudFormation	deployment.	We	can	select	Other	Actions	and	View/Edit

Templating	Designer.	This	will	open	a	nice	visualization	of	the	resources
involved	in	our	project:

You	can	also	download	the	image	of	our	deployment.	Lastly,	close	the	designer
and	delete	the	stack	that	we	have	just	created,	so	that	we	don't	have	to	pay	for	the
provision	throughput	of	our	DynamoDB	tables.	Click	on	Actions	and	Delete
Stack.

Summary
In	this	chapter,	we	learned	how	to	use	Eclipse	with	the	AWS	Toolkit	plugin,	and
we	used	Java	to	create	and	test	different	Lambda	functions.	First,	we	created	and
tested	a	Lambda	function	with	a	simple	string	input/output,	then	a	Lambda
function	that	is	triggered	through	S3	events,	and,	finally,	a	serverless	project	that
consists	of	two	Lambda	functions	that	write	to	or	read	from	DynamoDB	and	S3,
respectively.	In	the	next	chapter,	we	are	going	to	take	a	look	how	to	program
AWS	Lambda	using	Python.

	

Programming	AWS	Lambda	with
Python
	

In	this	chapter,	we	are	going	to	learn	how	to	program	AWS	Lambda	with
Python.	In	this	chapter,	we	are	going	to	cover	the	following:

Creating	Python	Lambda	functions	on	the	AWS	Management	Console
Creating	Python	Lambda	functions	using	the	Serverless	Framework
Building	a	serverless	web-application	backend	with	Python

	

	

Creating	a	python	lambda	function
We	are	going	to	use	the	AWS	Management	Console	to	create	Python	Lambda
functions	using	function	blueprints.	We	will	deploy	Python	functions	from	the
blueprints	and	then	test	them.

Sign	in	to	the	AWS	Management	Console	and	navigate	through	the	AWS
Lambda	dashboard:

As	shown	in	the	preceding	screenshot,	you	can	see	a	list	of	all	the	Lambda
functions	that	have	already	been	created	throughout	this	book,	most	of	them	in

Node.js	and	also	some	in	Java	8.	Let's	create	our	first	Lambda	function	using
Python.	Click	on	Create	a	Lambda	function.

We	can	select	the	Lambda	function	from	one	of	the	available	blueprints
provided.	Let's	start	with	a	simple	Blank	Function	blueprint.	Click	on	the	Blank
Function	blueprint.	Don't	select	the	trigger	and	just	click	Next.	We	need	to	give
our	function	a	name.	For	now,	let's	call	it	PyFun.	Select	the	Runtime	as	well	as
shown	below:

It's	now	created	as	Python	code.	We	have	a	very	simple	Lambda	function
handler,	which	takes	two	arguments:	an	event	that	we	invoke	our	Lambda
function	with	and	the	context	that	gives	us	runtime	information	on	our	Lambda
function.	Let's	add	another	statement	that	logs	the	event	that	we	invoke	our
Lambda	function	with.	Instead	of	returning	Hello	from	Lambda,	return	the

classic	Hello	World.	Scroll	down	a	little	bit	further,	as	we	need	to	configure	the
IAM	role	that	we	want	to	assign	to	our	Lambda	function.	For	now,	we	use	the
basic	execution	role,	as	shown	here:

Scroll	down	further	and	click	on	Next.	Review	the	configurations	and	click	on
Create	Function.	The	following	screenshot	shows	the	successfully	created
function:

Let's	test	it	with	one	of	the	test	events.	Click	on	Configure	test	events.	We	can
select	whichever	of	the	test	events	we	like.	For	this	chapter,	we	select	the	key	3
event.	It	doesn't	really	matter;	it	just	prints	it	out	on	the	console.	Scroll	down	and
click	Save	and	Test.	This	will	execute	or	invoke	our	Lambda	function,	returning
Hello	World.	We	can	take	a	look	at	this	excerpt	from	the	log	output,	which	states
the	event	you	have	selected.

Let's	now	go	back	to	the	Lambda	dashboard,	and	let's	create	a	more	interesting
Lambda	function	from	one	of	the	other	blueprints.	You	can	select	the	blueprints
by	the	runtime.	How	about	choosing	the	S3	get	object	type	Python	blueprint?

As	you	can	see,	a	trigger	has	already	been	pre-selected.	We	can	also	select	the
Bucket	that	we	want	to	use.	It's	Amazon	S3	that	triggers	our	Lambda	function.
So,	you	can	select	whichever	bucket	you	want	to	use.	You	just	need	to	make	sure
that	a	trigger	for	the	Lambda	functions	on	these	object-created	events	doesn't
already	exist.	So,	if	you	are	not	sure,	just	create	a	new	bucket.	You	could	also
restrict	it	to	listen	for	only	certain	events,	or	for	objects	that	start	with	a	certain
prefix	or	that	end	with	a	certain	suffix,	but,	for	now,	let's	leave	that	empty.	What
we	need	to	do	is	click	the	enable	trigger	checkbox	here,	which	gives	Amazon	S3
permission	to	invoke	our	Lambda	function.	Click	Next.

Now	we	need	to	give	our	Lambda	function	name.	For	now,	let's	name	it	PyFunS3.
Let's	take	a	look	at	the	code	that	has	been	generated	for	us	using	this	blueprint:

As	you	can	see	here,	we	import	couple	of	libraries	and	one	of	them	is	the	boto
library,	which	you	don't	need	to	bundle	with	your	source	code	because	it's
already	installed	on	the	instance	that	executes	this	Lambda	function.	So,	you
don't	need	to	download	and	install	this	boto	dependency.	You	can	just	use	it	by
importing	it.	Here,	we	create	an	S3	client	using	the	boto	client	library:

So,	boto	is	a	library	used	to	call	Amazon	Web	Services	and,	here,	we	want	to	call

S3	from	within	our	Lambda	function.	This	means	our	Lambda	function	is	not
only	triggered	by	an	S3	event,	we	also	want	to	call	the	S3	API	from	within	our
Lambda	function.	When	our	Lambda	function	is	invoked	by	an	S3-object-
created	event,	we	are	going	to	do	two	things:

We	are	going	to	read	the	bucket	in	which	the	object	has	been	created.	There
could	be	multiple	buckets	that	trigger	the	same	Lambda	function.	So,	we	retrieve
the	bucket	name	and	retrieve	the	key	name	of	the	object	that	has	been	created.
Then,	we	use	the	boto	S3	client	to	perform	a	get_object	request	on	S3;	we	retrieve
some	more	information	about	our	object,	such	as	the	content	type;	and	then	we
print	out	the	content	type.	What	we	could	possibly	do	here	is	also	retrieve	the
object	content	to	process	it;	for	example,	to	create	a	thumbnail	of	a	bigger
picture	or	to	transform	a	Microsoft	Word	document	into	a	PDF,	or	something
like	that.	So,	if	there's	no	error,	then	the	content	type	will	be	printed	out:

Scroll	down	further	to	Lambda	function	handler	and	role.	Here,	we	need	to
create	a	new	IAM	role	because	we	don't	only	need	permission,	and	S3	not	only
needs	permission	to	invoke	the	Lambda	function,	but	the	Lambda	function	also
needs	permission	to	retrieve	information	or	to	perform	the	get	object	request
here	on	S3.	So,	we	need	to	give	that	role	a	name;	here,	a	policy	template	has
been	selected	already,	which	is	an	object	read-only	permission,	because	we	want
to	read	the	content	type.	Let's	call	it	PyFunS3Role:

Scroll	down	and	click	Next.

Review	the	configuration	and	click	on	Create	function.	Once	the	function	has
been	created,	as	shown	in	the	following,	let's	test	it	with	a	synthetic	event:

Click	on	Actions	|	Configure	Test	Event.	And,	instead	of	using	the	Hello	World
event	in	the	sample	event	template,	let's	use	an	S3	event:

So,	this	S3	Put	event	should	do	the	trick	because	it's	an	object-created	event.
Click	on	Save	and	Test.

You	can	see	in	the	preceding	screenshot	that	we	get	an	access-denied	error.	Why
is	that?	Actually,	we	get	an	error	because	our	GetObject	operation	does	not	have
permission	to	use	the	S3	boto	client	to	perform	that	GetObject	request.	Instead	of
tweaking	the	synthetic	event,	we	can	also	go	to	our	S3	bucket	and	just	invoke	the
trigger.

Go	to	the	S3	bucket	and	upload	a	file.	Once	it	has	uploaded,	take	a	look.	Go
back	to	the	Lambda	dashboard,	and	click	on	Monitoring	and	View	logs	in
CloudWatch:

Here,	we	can	see	a	log	stream,	and	we	can	see	the	GetObject	operation	has	failed
because	access	is	denied.	But	we	can	also	see	that	manually	invoking	the	S3-
object-created	event	has	actually	worked,	and	you	can	see	the	content	type	is	an
image	in	the	following	format:

Using	the	Serverless	Framework	with
Python
In	the	previous	section,	we	created	our	first	Python	Lambda	functions	on	the
AWS	Management	Console.	In	this	section,	we	will	use	the	serverless
framework	to	create	Python	Lambda	functions.	We	will	invoke	the	function
locally,	and	then	we	will	deploy	and	remotely	invoke	the	function.

Open	a	terminal	window	in	the	Atom	Editor.	We	will	use	the	serverless
command-line	interface	to	generate	a	Python	Lambda	function	from	the
template.	If	you	don't	have	the	serverless	framework	installed	on	your	computer,
please	head	back	to	the	install	and	setup	video	right	at	the	beginning.	You	should
be	able	to	execute	this	command	to	print	out	the	serverless	version	that	you	have
installed.	Currently,	we're	using	serverless	framework	version	1.6.1.	You	can
create	a	new	function	using	the	command,	sls	create	and	specifying	the	template,
--template	or,	for	short,	-t.	Then	set	the	runtime	platform,	set	the	language	by
using	aws-python,	and	giving	the	function	the	name	pyblog,	as	shown	here:

sls	create	-t	aws-python	-n	pyblog

This	will	generate	some	boilerplate	code,	which	can	be	seen	on	the	left-hand	side
with	the	serverless.yml	file	and	a	handler.py	file	that	implement	the	Lambda
function	handler.	Let's	take	a	look	at	the	serverless.yml	file	first.

There	are	some	boilerplate	comment	codes,	which	can	be	deleted.	There	is	then
the	name	of	the	service,	which	is	pyblog	here;	the	provider	name,	AWS;	and
Python	version	2.7.	We	also	want	to	change	the	region,	as	we	want	to	deploy	our
function	in	the	eu-central-1	region	in	Frankfurt:

service:	pyblog

provider:

			name:	aws

			runtime:	python2.7

			stage:	dev

			region:	eu-central-1				

Following	this,	you	can	also	see	the	reference	to	the	Lambda	function:

functions:

			hello:

						handler:	handler.hello

The	Lambda	function	currently	has	the	name	hello.	And	it	references	the	function
handler,	the	handler	(the	handler.py	file),	and	the	hello	function	in	the	py	file,
which	is	shown	here:

import	json

def	hello(event,	context):

				body	=	{

								"message":	"Go	Serverless	v1.0!	Your	function	executed	successfully!",

								"input":	event

				}

				response	=	{

							"statusCode":	200,

							"body":	json.dumps(body)

				}

return	response

If	we	invoke	this	Lambda	function	with	an	event,	it	simply	prepares	a	body	with
a	message	property	and	an	input	property;	in	the	input	property,	it	just	prints	out
the	event	that	it	has	been	invoked	with	and	then	it	prepares	a	response.	The	body
is	dumped	into	JSON	and	then	it	returns	the	response.

You	can	locally	invoke	our	Lambda	function	via	sls	invoke	local,	and	then	get	the
function	name	with	-f.	Right	now,	the	function	name	is	hello:

As	you	can	see	in	the	preceding	screenshot,	it	has	worked.	Hence,	we	can	locally
invoke	our	Lambda	function.	Let's	deploy	our	Lambda	function:

Let's	now	invoke	it	remotely.	You	can	simply	use	the	command	from	before,	but
instead	of	using	sls	invoke	local,	we	use	sls	invoke	-f	hello:

This	invokes	our	remote	Lambda	function.

In	the	next	section,	we	are	going	to	build	a	serverless	backend,	which	is	similar
to	the	backend	that	we	built	previously	with	Node.js,	but	this	time	we	are	going
to	build	it	with	Python.

Building	a	Serverless	backend	with
Python
In	the	previous	section,	we	created	a	simple	Lambda	function	using	the
serverless	framework	and	Python.	Now	we	will	create	a	more	complex	service
similar	to	the	one	that	we	created	using	Node.js,	but	using	Python.	In	this
section,	we	will	refactor	the	Lambda	function	from	our	previous	section.	We	will
add	DynamoDB	for	data	persistence,	create	the	other	CRUD	operations,	and	test
our	deployed	service	using	Postman.

Go	back	to	the	Atom	Editor	where	we	last	left	off.	Let's	refactor	the	handler
function	a	little	bit.	For	example,	we're	going	to	replace	the	body	with	a	short
message,	Created	new	article.

Let's	print	out	the	event	that	the	Lambda	function	has	been	invoked	with.	Instead
of	naming	the	function	handler	hello,	we	simply	rename	it	handler:

def	handler(event,	context):

				print('received	event{}'.format(event))

			

				body	=	{

							"message":	"Created	new	article"

				}

				response	=	{

									"statusCode":	200,

									"body":	json.dumps(body)

				}

return	response

Now	go	to	the	serverless.yml	file	and	rename	the	file	from	hello	to	handler.	It
becomes	handler.handle,	but	that	sounds	weird,	so	we	change	the	name	of	the
handler.py	file	from	handler	to	create,	and	then	go	back	to	the	serverless.yml	and
call	hello	to	create	it,	as	shown	here:

functions:

			create:

						handler:	create.hello

Next,	we	need	to	give	the	Lambda	function	an	IAM	role	that	enables	it	to

perform	certain	DynamoDB	operations.	So,	we	replace	the	commented	code
with	the	following	IAM	role	statements:

provider:

			name:	aws

			runtime:	python2.7

			stage:	dev

			region:	eu-central-1

			iamRoleStatements:

			-	Effect:	Allow

					Action:

							-	dynamodb:Query

							-	dynamodb:GetItem

							-	dynamodb:PutItem

							-	dynamodb:UpdateItem

							-	dynamodb:DeleteItem

					Resource:	"arn:aws:dynamodb:eu-central-1:186706155491:table/PyBlogTable"

Please	be	aware	that	the	syntax	is	supposed	to	change	from	serverless	framework
1.8	upwards,	so	when	that	happens,	please	take	a	look	at	the	source	code	in	our
repository.	Do	check	that	out	in	case	it	doesn't	work	with	your	version	of	the
serverless	framework.	What	we	need	to	do	is	give	the	Lambda	function
permission;	that	is,	allow	it	to	perform	certain	actions-such	as	query,	get	item,
put	item,	and	so	on-on	the	resources	previously	shown.	You	should	replace	this
with	your	own	resources,	so	you	need	to	go	to	the	AWS	Management	Console
after	your	DynamoDB	table	has	been	created	and	make	sure	that	this	is	the
resource.	In	a	moment,	we	will	show	you	where	you	find	it.	After	that,	scroll
down	further	in	the	serverless.yml	file,	where	we	will	be	able	to	create	additional
resources	using	the	CloudFormation	resource	template,	by	creating	the
DynamoDB	table	that	you	will	give	your	Lambda	function	access	to,	as	shown
here:

resources:

			Resources:

					BlogTable:

								Type:	AWS::DynamoDB::Table

								Properties:

											TableName:	PyBlogTable

											AttributeDefinitions:

														-	AttributeName:	article_id

																AttributeType:	S

											KeySchema:

													-	AttributeName:	article_id

															KeyType:	HASH

											ProvisionedThroughput:

														ReadCapacityUnits:	1

														WriteCapacityUnits:	1

As	you	can	see	from	the	previous	screenshot,	the	table	name	is	PyBlogTable	and	it
has	one	hash	key,	article_id,	which	is	string	type.	We	also	specify	the	capacity

units,	which	is	the	throughput	that	is	provisioned	for	the	table.

The	minimum	setting	is	1	for	read	and	1	for	write.

The	higher	the	settings,	the	more	throughputs	you	get,	so	the	more	concurrent
requests	you	can	make	on	your	DynamoDB	table,	but	also	the	higher	your	costs.
For	our	simple	application,	1	and	1	are	fine.	So,	once	it	is	set,	move	over	to	the
function	and	add	an	HTTP	event.	Let's	make	it	a	post	method	instead	of	a	get
method	because	this	is	a	create	operation,	and,	by	specifying	this	here	and
performing	an	sls	a	serverless	deploy,	we	will	also	create	the	appropriate	API
endpoint	using	the	API	Gateway	service.

functions:

			create:

						handler:	create.handler

						events:

								-	http:

												path:	articles

												method:	post

Now	go	to	the	terminal	and	do	an	sls	deploy,	which	will	result	in	the	following:

Once	deployed,	let's	invoke	it	remotely	via	sls	invoke	with	the	function	name
create:

As	you	can	see	in	the	preceding	screenshot,	this	returns	the	message	Created	new
article.	Now	let's	head	over	to	the	AWS	Management	Console	and	see	if	our
DynamoDB	table	has	been	created.	Log	into	the	AWS	Management	Console	and
go	to	the	DynamoDB	dashboard.

As	you	can	see,	the	PyBlogTable	has,	in	fact,	been	created.	If	you	click	on	it,	you
will	be	able	to	see	some	additional	information.	If	you	scroll	down	on	the
Overview	tab,	you	can	also	see	the	ARN,	which	is	the	string	that	identifies	your
table	as	an	Amazon	resource.	So,	copy	that	and	paste	it	into	your	serverless.yml
file	in	the	iamRoleStatements.	The	iamRoleStatements	gives	your	Lambda	function
permission	to	perform	the	actions	on	this	resource,	and	this	is	the	resource	that
specifies	your	DynamoDB	table.

Now	we	have	created	a	DynamoDB	table	and	our	Lambda	function	has
permission	to	access	the	table,	but,	actually,	if	we	take	a	look	at	the	create.py
function	handler,	it	doesn't	really	do	anything	yet.	So,	we	need	to	replace	the
code	with	the	following:

from_future_import	print_function	#Python	2/3	compatibility

import	json

import	boto3

import	uuid

def	handler(event,	context):

				print('received	create	event{}'.format(event))

				dynamodb	=	boto3.resource('dynamodb',	region_name='eu-central-1')

				table	=	dynamodb.Table('PyBlogTable')

				id	=	str(uuid.uuid1())

				put_response	=	table.put_Item(

								Item	=	{

												'article_id':	id,

												'text':	'hello	python'

												}

								}

				print('put	response{}'.format(put_response))

Here,	we	are	importing	the	boto	library.	This	is	globally	installed	on	the	instance
that	executes	your	Lambda	function,	so	you	don't	need	to	install	this	dependency.
You	can	simply	import	it	and	use	it;	for	example,	here	it	is	used	to	instantiate	a
DynamoDB	client.	On	the	DynamoDB	client,	we	want	to	access	the	PyBlogTable,
and,	since	we	are	going	to	create	a	new	item,	we	are	going	to	create	a	UUID;
then	prepare	a	put_item	request	with	the	following	item	content,	which	is	an
article_id,	with	our	randomly	generated	UUID	and	the	following	hard-coded	text:

put_response	=	table.put_item(

				Item	=	{

								'article_id':	id,

								'text':	'hello	python'

								}

)

This	will	return	the	following	put_response,	which	we	are	going	to	print	out	on	the
console,	and	also	we're	going	to	play	it	back	in	our	response,	as	shown	here:

print('put	response{}'.format(put_response))

response	=	{

					"statusCode":	200,

					"body":	json.dumps(put_response)

}

Now	we	will	do	an	sls	deploy	to	update	our	service	and	then	test	if	it	works:

Once	the	service	has	been	deployed,	we	use	a	synthetic	dummy	event	to	test	the
Lambda	function.	Create	a	new	file	in	your	directory.	Here,	we	name	the	new
event.json	with	the	following	content:

{

"body":	{\article_id":\"8268c73-fdc7-11e6-8554-985aeb8c9bcc"\,\"text\":	\"Hello	

Universe\"}"

}

We	then	perform	an	sls	invoke	with	the	create	function	and	specify	the	path	to	the
event.json	file:

After	invoking	this,	we	head	back	to	our	AWS	Management	Console	and	go	to
the	DynamoDB	dashboard.	Have	a	look	in	the	Items	tab:

Our	hello	python	article	has	been	created.	Copy	the	read,	update,	and	delete
Python	Lambda	function	handlers	into	the	directory,	and	update	the	serverless.yml
file.	We	also	need	to	change	the	path	a	little	bit,	so,	instead	of	createnow,	it	says
articles.	For	the	read	article,	we	give	it	a	path	parameter,	which	is	the	ID	of	my
article	as	shown	here:

functions:

			create:

						handler:	create.handler

						events:

								-	http:

												path:	articles

												method:	post

			read:

					handler:	read.handler

					events:

							-	http:

											path:	articles/{id}

											method:	get

			update:

					handler:	update.handler

					events:

We	can	perform	put	operations	to	update	the	article	and	can	also	perform	delete
operations	to	delete	articles:

update:

			handler:	update.handler

			events:

						-	http:

										path:	articles

										method:	put

	delete:

				handler:	delete.handler

				events:

						-	http:

										path:	articles

										method:	delete

The	rest	is	the	same	as	before.	We	also	need	to	add	respective	function	handlers
to	get	items	from	the	DynamoDB	table,	return	them	in	response	to	the	update
articles	in	the	DynamoDB	table,	and	delete	articles	in	the	DynamoDB	table.	We
also	need	to	add	a	path	parameter	to	the	event.json	file,	so	that	we	can	test	the
read-article	function	handler,	as	shown	here:

{

	"pathParameters":	{"article_id":	"d4b8d9f0-fdc6-11e6-9cc5-985aeb8c9bcc"},

	"body":	"{\"article_id\":\"82682c73-fdc7-11e6-8554-985aeb8c9bcc\",	\"text\":	\"Hello	

World\"}"

}

Now	deploy	the	function	and	test	the	API	using	Postman.	To	test	the	API,	copy
the	following	endpoint,	then	open	Postman	and	use	the	endpoint:

Open	Postman	and	select	the	post	HTTP	method	to	create	a	new	article.	Paste
the	endpoint	that	we	copied	previously,	and	add	the	following	JSON	file	as	a
payload	to	post	the	request,	as	shown	here,	and	click	Send:

This	will	return	the	article_id	of	the	article	that	has	been	created.	Copy	that	and

perform	a	get	request.	This	returns	the	texts	that	we	have	just	created	with	our
article	Hello	from	Postman,	as	shown	here:

Summary
In	this	chapter,	we	learned	how	to	create	Lambda	functions	from	blueprints	on
the	AWS	Management	Console	using	Python.	Then	we	used	the	serverless
framework	with	Python	to	create	a	slightly	more	complex	service	that	includes
Lambda,	API	Gateway,	and	DynamoDB.	In	the	next	chapter,	we	are	going	to
program	AWS	Lambda	using	C#.

	

Programming	AWS	Lambda	with	C#
	

At	the	time	of	working	on	this	chapter,	C#	is	the	newest	language	addition	to	the
AWS	platform.	You	can	now	build	Lambda	functions	and	serverless	applications
using	C#	and	.NET	tools.	In	this	chapter,	we	are	going	to	cover	the	following
topics:

Creating	C#	Lambda	functions	with	.NET	Core
Creating	C#	serverless	projects	with	.NET	Core

	

	

Creating	C#	Lambda	functions	with
.NETCore
In	this	section,	we	are	going	to	create	a	Lambda	function	using	.NET	Core.	We
are	going	to	take	a	look	at	how	to	install	the	AWS	Toolkit	for	Visual	Studio.
Then,	we	are	going	to	try	out	some	features	of	the	AWS	Toolkit	and	we'll	use	it
to	create	our	first	C#	Lambda	function.

Firstly,	we	need	to	download	the	AWS	Toolkit	for	Visual	Studio,	so	download
and	execute	the	installer,	and	launch	Visual	Studio.	After	you	have	signed	up	for
an	AWS	account,	sign	in	to	the	AWS	Management	Console.	Click	on	Services	in
the	upper	left-hand	corner	and	select	IAM,	which	will	navigate	you	to	the
Identity	and	Access	Management	dashboard:	

Now,	we	need	to	create	a	special	user	with	permissions	to	access	AWS	services
programmatically.	This	allows	us	to	set	up	our	local	development	environment	in
a	way	that	IDEs'	development	frameworks	can	use	AWS	on	our	behalf.	You
should	set	up	an	IAM	user	to	keep	your	AWS	account	secure	because	you	can
simply	create	an	IAM	user	with	a	set	of	permissions	and,	after	performing	the
exercises	using	that	IAM	user,	you	can	later	delete	it.	Therefore,	your	access
credentials	are	not	prone	to	the	risk	of	being	abused	by	somebody	else	if	another
person	gets	access	to	your	identity	and	access.	Here,	let's	create	a	special	user	for

the	purpose	of	this	chapter.	We	are	going	to	give	this	user	access	permissions	to
use	AWS	services	programmatically.	It's	always	good	practice	to	create	an	IAM
user	with	specially	tailored	permissions.	For	the	purpose	of	this	tutorial,	let's
create	a	user	to	access	AWS	services	on	our	behalf;	for	example,	from	the
Eclipse	IDE	or	through	the	serverless	framework.	After	you	have	performed	the
exercise	in	this	tutorial,	you	can	simply	delete	this	IAM	user,	so	you	won't	run
the	risk	of	accidentally	exposing	your	credentials	in	a	way	that	somebody	else
can	use	your	AWS	account	on	your	behalf.

First,	we're	going	to	create	an	IAM	group,	so	click	on	Groups	on	the	left-hand
side.	Create	a	new	group	named	learninggroup	and	click	on	Next	Step.	For
simplicity,	give	the	group	administrator	access.	This	is	not	the	best	security
guideline,	but	it's	simple	and	gets	us	started	quickly.	You	can,	and	you	should,
probably	delete	this	group	as	soon	as	you	are	done	with	performing	these
exercises.	Click	on	Next	Step	and	the	group	is	created.

Now	we	need	to	assign	the	user	to	the	newly	created	group.	Go	back	to	the
dashboard,	create	a	user,	and	assign	the	user	to	the	newly	created	group.	Click	on
the	Add	User	button	and	give	the	user	the	name	learninglambda.	Also,	give	the	user
programmatic	access.	This	will	create	an	access	key	ID	and	a	secret	access	key
for	your	user,	so	the	command-line	interface,	serverless	framework,	SDK	or
other	development	tools	that	are	set	up	on	your	local	computer	can	access	AWS
services	on	your	behalf.	Click	on	the	Next	Permissions	button.

So	far,	we	have	added	a	user	to	the	group	learninggroup	and	now	we	are	going	to
create	the	user.	Once	our	user	has	been	created	successfully,	it	creates	an	access
key	ID	and	secret	access	key	for	your	user.	Copy	this	information	into	a	text
editor	for	now.

Creating	an	AWS	Lambda	project
Let's	get	started	by	creating	a	new	AWS	Lambda	project.

1.	 Click	on	File	|	New	|	Project.

To	install	the	AWS	Toolkit,	you	should	see	the	preceding	options	on	the	left-hand	side,
including	AWS	Lambda,	and	there	are	some	sample	projects	with	sample	code	for	your
reference.

2.	 Let's	get	started	with	a	very	simple	AWS	Lambda	Project	using	the
.NETCore	framework.	Leave	the	defaults	as	they	are,	as	AWSLambda1,	and	click
OK.

3.	 Select	one	of	the	blueprints.	Let's	get	started	with	a	really	simple	empty
function	blueprint.	Click	Finish.

Our	AWS	Lambda	project	has	been	created	and	it	will	show	up	in	our	Solution
Explorer.	Now	let's	take	a	look	at	the	function	handler:

So,	from	the	preceding	screenshot,	the	structure	of	the	Lambda	function	looks
similar	to	the	examples	that	we	have	seen	before	for	Java	and	other
programming	languages.	We	have	our	function	handler,	and	the	function	handler
takes	two	arguments:	the	input,	which	in	this	case	is	a	string,	and	the	context
object,	which	gives	us	information	on	the	runtime	context	of	our	Lambda
function.

public	string	FunctionHandler(string	input,	ILambdaContext	context)

{

				return	input?.ToUpper();

}

This	Lambda	function	simply	takes	the	input,	transforms	it	into	uppercase
characters,	and	returns	them.	Also,	make	sure	that	you	are	in	the	right	region.
Here,	we	are	deploying	our	Lambda	function	into	the	EU	Central	region	and
Frankfurt.	Give	our	function	the	name	CSFunction,	and	click	Next,	which	will	lead
you	to	select	some	further	configurations	for	our	Lambda	function,	such	as	an
IAM	role.	For	example,	if	you	want	to	access	other	AWS	services	from	within
your	Lambda	function,	you	need	to	select	an	IAM	role	that	gives	your	Lambda
function	permission	to	do	that.	We	can	also	configure	the	amount	of	memory.
For	now,	select	the	smallest	amount.	We	also	select	the	timeout,	which	is	the
time	after	which	our	function	will	time	out,	as	shown	here:

For	the	IAM	role,	we	simply	choose	the	Lambda	basic	execution	role,	as	shown
in	the	previous	screenshot,	which	has	no	special	permissions.	Click	on	Upload	to
upload	the	Lambda	function.

As	you	can	see	from	the	previous	screenshot,	we	have	created	our	first	Lambda
function	with	C#.	If	we	give	it	some	input	and	invoke	it,	we	get	our	uppercase
string	as	return.	Head	to	the	AWS	Management	Console	and	have	a	look	at	our
Lambda	function	there.	On	the	AWS	Lambda	dashboard,	you	can	see	that	four
functions	have	been	created:	for	getting	all	blogs,	for	getting	a	single	blog,	for
adding	a	blog,	and	for	removing	a	blog.	This	is	as	follows:

Head	over	to	the	DynamoDB	dashboard.	A	new	table,	CsBlogTable,	has	been
created.	It	has	a	single	hash	ID	or	primary	partition	key,	with	name	Id	and	type
string:

Let's	try	out	our	API	by	invoking	it	with	Postman.	Go	back	to	Visual	Studio	and
log	into	the	AWS	Management	Console.	We've	deployed	all	our	functions	in	the

Frankfurt	region.	As	you	can	see	here,	we	have	a	new	addition,	the	CSFunction:

You	can	take	a	look	at	it	by	clicking	on	Monitoring.	As	you	can	see	in	the
following	screenshot,	we	have	just	had	an	error	and	we	also	had	one	successful
invocation:

If	you	click	on	CloudWatch,	you	can	also	view	the	logs	there	that	you	have	just
seen	in	your	Visual	Studio	log	console.	Next,	we	are	going	to	create	a	serverless
application	with	C#	and	the	.NET	Core	framework.

Creating	C#	Serverless	Project	with
.NET	Core
In	the	previous	section,	we	used	Visual	Studio	and	the	AWS	Toolkit	to	create	our
first	AWS	Lambda	function	with	C#.	Now	we	will	create	a	more	complex
serverless	project	that	contains	Lambda	functions	and	the	API	Gateway.	We	are
going	to	use	the	AWS	Toolkit	and	Visual	Studio	to	create	a	serverless	project.
We	will	also	explore	the	generated	source	code	and	deploy	and	test	the	project.

1.	 Go	to	Visual	Studio	2015	and	create	a	new	serverless	project.	Select	File	|
New	|	Project.

2.	 Select	AWS	Serverless	Application	and	click	OK.
3.	 We	are	creating	a	little	bit	more	complex	application,	so	select	the	Blog	API

using	DynamoDB.

4.	 Our	serverless	project	has	been	created.	There	are	two	files	that	have	been
generated	for	us,	Blog.cs	file	and	Functions.cs	file,	as	shown	here:

In	the	Functions.cs	file,	we	find	the	function	handlers	that	are	used	to	implement
the	business	logic	for	our	Blog	API.	First,	there	is	a	constructor	that	sets	up	the
context	for	our	DynamoDB:

namespace	AWSServerless1

{

			public	class	Functions

			{

						const	string	TABLENAME_ENVIRONMENT_VARIABLE_LOOKUP	=	"BlogTable";

	

						public	const	string	ID_QUERY_STRING_NAME	=	"	Id";

						IDynamoDBContext	DDBContext	{get;	set;	}

						

						public	Functions()

						{

											var	tablename	=	

											

System.Environment.GetEnvironmentVariable(TABLENAME_ENVIRONMENT_VARIABLE_LOOKUP);

											if(!string.IsNullOrEmpty(tableName))

											{

															AWSConfigDynamoDB.COntext.TypeMappings[typeof(Blog)]	=	new	

															Amazon.Util.TypeMapping(typeof(BlogTable))

											}

											var	config	=	new	DynamoDBContextConfig	{COnversion	=	

DynamoDBEntryConversion.V2};

For	example,	in	the	previous	screenshot,	we	retrieve	the	table	name	from	an
environment	variable	and	set	up	the	context	for	our	DynamoDB	client.
Following	this,	you	will	see	the	main	business	functions,	such	as	get	blogs.	You
can	also	retrieve	a	blog	identified	by	its	blog	ID.	We	read	the	blog	ID	from	the
path	parameters:

public	async	Task<APIGatewayProxyResponse>	GetBlogAsync(APIGatewayProxyRequest	request,	

ILambdaContext)

{

			string	blogId	=	null;

			if(request.PathParameters	!=	null	&&	

request.PathParameters.ContainsKey(ID_QUERY_STRING_NAME))

						blogId	=	request.PathParameters[ID_QUERY-STRING_NAME];

			else	if(request.QueryStringParameters[ID-QUERY-STRING_NAME]);

Further	to	this,	we	use	the	DynamoDB	client	to	retrieve	the	blog	from	our
DynamoDB	table:

context.Logger.LogLine($"Getting	blog	(blogId}");

var	blog	=	await	DDBContext.LoadAsync<Blog>(blogId);

context.Logger.LogLine($"Found	blog:	{blog!=	null}");

if(blog	==	null)

{

			return	new	APIGatewayProxyResponse

			{

						StatusCode	=	(int)HttpStatusCode.NotFound

			};

}

In	the	following	screenshot,	we	are	preparing	an	API	Gateway	proxy	response,
so	we	set	the	HTTP	status	code,	body,	and	headers	in	our	code	instead	of	setting
these	in	our	AWS	Management	Console.	This	is	pretty	similar	to	the	approach	in
the	serverless	framework	and	Lambda	proxy	integration.

var	response	=	new	APIGatewayProxyResponse

{

				StatusCode	=	(int)HttpStatusCode.OK,

				Body	=	JsonConvert.SerializeObject(blog),

				Headers	=	new	Dictionary<string,	string>{{"Content-Type",	"application/json"}}

};

return	response;

In	addition,	we	have	a	function	that	adds	the	blog	post	and	a	function	for
removing	a	blog	post.

In	our	Solution	Explorer,	we	can	see	the	serverless.template,	which	contains	the
serverless	application	model,	as	shown	here:

{

			"AWSTemplateFormatVersion":	"2010-09-09",

			"Transform":	"AWS::Serverless-2016-10-31",

			"Description":	"AWS	Serverless	API	that	exposes	the	add,	remove	and	get	operations	

for	a	blogging	

			platform"

			"Parameters":	{

					"ShouldCreateTable"	

This	is	basically	an	extension	of	the	CloudFormation	syntax	that	we	use	it	to
create	AWS	resources.	For	example,	we	specify	the	Lambda	functions	to	get
blogs,	get	a	single	blog	identified	by	its	ID,	add	blogs,	and	remove	blogs.	We
also	specify	the	blog	table	that	is	being	created	in	DynamoDB.

Let's	try	it	out.	Right-click	on	the	AWS	Serverless1	in	the	Solution	Explorer,	and
Publish	to	AWS	Lambda;	we	can	use	the	same	account	settings	as	before,	as
shown	in	the	following:

Select	the	stack	name	and	create	a	new	bucket	to	which	our	CloudFormation
code	will	be	uploaded.	Click	Next.

We	then	need	to	enter	the	environment	variables	that	will	be	used	in	our	function
code,	as	you	have	seen	before.	We	also	need	to	enter	a	table	name	for	the	blog
table	that	is	being	created	in	DynamoDB.	We	call	it	CsBlogTable,	as	shown	here:

The	minimum	settings	for	reading	capacity	and	write	capacity	for	DynamoDB
are	1	and	1.	Once	that	is	done,	click	on	Publish.

You	will	be	able	to	see	the	current	Status	of	the	CloudFormation	stack	that	will
create	our	resources,	which	should	end	with	Create_Completed.

If	there	was	an	error	in	your	setup,	you	should	get	some	info	back	on	your	console.	Or	you
can	go	to	the	AWS	Management	Console	dashboard,	then	head	over	to	the	CloudFormation

dashboard,	and	see	what	has	gone	wrong.	You	can	also	delete	your	CloudFormations	stack
and	all	the	resources	that	have	been	created	here	by	going	to	your	AWS	Management	Console
and	simply	deleting	the	stack.

You	can	also	go	to	the	AWS	Management	dashboard	and	take	a	look	what	has
been	created.

Just	copy	the	URL	to	our	API	and	open	Postman.

Summary
We	have	explored	programming	Lambda	using	Java,	Python,	and	C#.	In	the	case
of	Java,	we	used	Eclipse	with	the	AWS	Toolkit	plugin	to	create	simple	Lambda
functions,	as	well	as	more	complex	serverless	projects	that	include	multiple
Lambda	functions,	the	API	Gateway	service,	and	DynamoDB.	Similarly,	in	the
case	of	C#,	we	used	Visual	Studio	with	the	AWS	Toolkit	to	create	simple
Lambda	functions,	as	well	as	a	more	complex	serverless	project.	For	Python,	we
used	the	serverless	framework.

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Mastering	AWS	Lambda
Yohan	Wadia,	Udita	Gupta

ISBN:	978-1-78646-769-0

Understand	the	hype,	significance,	and	business	benefits	of	Serverless
computing	and	applications
Plunge	into	the	Serverless	world	of	AWS	Lambda	and	master	its	core
components	and	how	it	works
Find	out	how	to	effectively	and	efficiently	design,	develop,	and	test
Lambda	functions	using	Node.js,	along	with	some	keen	coding	insights	and
best	practices
Explore	best	practices	to	effectively	monitor	and	troubleshoot	Serverless
applications	using	AWS	CloudWatch	and	other	third-party	services	in	the
form	of	Datadog	and	Loggly
Quickly	design	and	develop	Serverless	applications	by	leveraging	AWS
Lambda,	DynamoDB,	and	API	Gateway	using	the	Serverless	Application
Framework	(SAF)	and	other	AWS	services	such	as	Step	Functions
Explore	a	rich	variety	of	real-world	Serverless	use	cases	with	Lambda	and
see	how	you	can	apply	it	to	your	environments

https://www.packtpub.com/virtualization-and-cloud/mastering-aws-lambda

Building	Serverless	Architectures
Cagatay	Gurturk

ISBN:	978-1-78712-919-1

Learn	to	form	microservices	from	bigger	Softwares
Orchestrate	and	scale	microservices
Design	and	set	up	the	data	flow	between	cloud	services	and	custom
business	logic
Get	to	grips	with	cloud	provider’s	APIs,	limitations,	and	known	issues
Migrate	existing	Java	applications	to	a	serverless	architecture
Acquire	deployment	strategies
Build	a	highly	available	and	scalable	data	persistence	layer
Unravel	cost	optimization	techniques

https://www.packtpub.com/application-development/building-serverless-architectures

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	AWS Lambda Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	Packt is searching for authors like you

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Bibliography

	Getting Started with AWS
	Installation and setup guide
	Installing the Serverless framework

	Introduction to AWS
	Cloud service pricing
	Pricing example

	AWS Management Console
	Regions

	AWS Lambda
	AWS API Gateway
	Summary

	Exploring the Serverless Framework
	The Serverless framework
	Creating a serverless project
	Programming a Lambda function with Node.js
	Testing and debugging Lambda functions
	Testing the API using Postman
	Testing and debugging via the AWS Management Console

	Summary

	Building a Serverless Application
	Building a stateless serverless web application backend
	Changing the file structure
	Creating more functions

	Creating a stateful serverless backend with DynamoDB
	Creating a web client
	Deploying a serverless frontend on CloudFront
	Summary

	Programming AWS Lambda with Java
	Deploying and Testing AWS Lambda Functions
	Lambda Function with S3 Event Input
	Creating a Simple Serverless Java Project

	Summary

	Programming AWS Lambda with Python
	Creating a python lambda function
	Using the Serverless Framework with Python
	Building a Serverless backend with Python
	Summary

	Programming AWS Lambda with C#
	Creating C# Lambda functions with .NETCore
	Creating an AWS Lambda project

	Creating C# Serverless Project with .NET Core
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

