AWS Lambda
Quick Start

By Markus Klems

AWS Lambda Quick Start Guide

Learn how to build and deploy serverless applications on AWS

Markus Klems

Packt

BIRMINGHAM - MUMBAI

AWS Lambda Quick Start Guide

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Wilson D'souza
Acquisition Editor: Reshma Raman

Content Development Editor: Roshan Kumar
Technical Editor: Shweta Jadhav

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Jisha Chirayil

Production Coordinator: Deepika Naik

First published: June 2018
Production reference: 1290618

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-019-8

www . packtpub.com

http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and, as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Markus Klems is a software development and system administration expert for
scalable, high-availability, and high-performance software systems, such as big
data, mobile, web application, and Software-as-a-Service systems. Within the
framework of his research and development work at TU Berlin and Karlsruhe
Institute of Technology (KIT), Markus has gained in-depth knowledge and
experience of complex and large-scale IT systems. He has been working with
Amazon Web Services (AWS) since 2008 and is particularly excited about
serverless computing and serverless microservice architectures.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page

Copyright and Credits

AWS Lambda Quick Start Guide

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

Packt is searching for authors like you

Preface

What this book covers

What you need for this book

Who this book is for

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

Bibliography

1. Getting Started with AwWS
Installation and setup guide

Installing the Serverless framework

Introduction to AWS
Cloud service pricing

Pricing example

AWS Management Console

Regions

AWS Lambda

AWS API Gateway

Summary

2. Exploring the Serverless Framework

The Serverless framework

Creating a serverless project

Programming a Lambda function with Node.js

Testing and debugging Lambda functions

Testing the API using Postman

Testing and debugging via the AWS Management Console

Summary

3. Building a Serverless Application
Building a stateless serverless web application backend

Changing the file structure

Creating more functions

Creating a stateful serverless backend with DynamoDB

Creating a web client

Deploying a serverless frontend on CloudFront

Summary

4. Programming AWS Lambda with Java

Deploying and Testing AWS Lambda Functions

Lambda Function with S3 Event Input

Creating a Simple Serverless Java Project

Summary

5. Programming AWS Lambda with Python

Creating a python lambda function

Using the Serverless Framework with Python

Building a Serverless backend with Python

Summary

6. Programming AWS Lambda with C#
Creating C# Lambda functions with .NETCore

Creating an AWS Lambda project

Creating C# Serverless Project with .NET Core

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Welcome to Learning AWS Lambda!

In this book, you will learn how to use Lambda, how to use it in combination
with other AWS services, in particular API Gateway Service, but also services
such as DynamoDB, which is the database as a service offering by Amazon that
is also a pay-per-use utility-based, utility computing-based service, which works
very well in the context of our serverless application architecture.

Also, we will look at other Amazon Web Services that work well alongside
Lambda. In addition, you will learn how to use the serverless framework to build
larger applications to structure your code, to autogenerate boilerplate code that
you can use to get started quickly. In this video, we will explore Lambda and you
will learn how to build scalable and cost-efficient applications that require nearly
no operations once you have built and deployed your application.

So let's get started on this wonderful journey.

What this book covers

chapter 1, Getting Started with AWS, gives you an introduction to the fundamental
concepts of AWS and also explores the AWS web dashboard. You will also learn
to create and test your first lambda function as well.

chapter 2, Exploring the Serverless Framework, teaches you how to use the
Serverless Framework to create and test Lambda functions and APIs. You will
also try out different approaches for API testing, Lambda testing, and debugging.

chapter 3, Building a Serverless Application, shows you how to build your first
serverless application.

chapter 4, Programming AWS Lambda with Java, focuses on how to program
Lambda using Java. You will also learn how to use Eclipse with the AWS
Toolkit plugin.

chapter 5, Programming AWS Lambda with Python, features how to create
Lambda functions from blueprints on the AWS Management Console using
Python.

chapter 6, Programming AWS Lambda with C#, showcases how to create C#
Lambda functions and serverless projects with NET Core.

What you need for this book

The only prerequisite for this course is to have basic programming or scripting
experience, which will facilitate the understanding of the examples quickly.

In terms of environment, you only need to download the virtual machine that
contains the vulnerable target web application and the Python environment with
all the necessary libraries. To run a virtual machine, you will need to install
VirtualBox from www.virtualbox.org.

http://www.virtualbox.org

Who this book is for

This book is primarily for IT architects and developers who want to build
scalable systems and deploy serverless applications with AWS Lambda. No prior
knowledge of AWS is necessary.

To get the most out of this book

This book will give you the maximum benefit if you have some theoretical
knowledge of AWS services. Additionally, install the following in your system:

e Java version 1.8
e Visual Studio 2015
e Python 2.7.15

Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/packtpu
blishing/Aws-Lambda-Quick-Start-Guide. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/AWS-Lambda-Quick-Start-Guide
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/default/f

iles/downloads/AwSLambdaQuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/AWSLambdaQuickStartGuide_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webstorm-10*.dng disk image
file as another disk in your system."

A block of code is set as follows:

service: blog
provider:
name: aws
runtime: nodejs4.3
stage: dev
region: eu-central-1

Any command-line input or output is written as follows:

| s1s create -t aws-nodejs -n blog

Bold: Indicates a new term, an important word, or words that you see on screen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."”

0 Warnings or important notes appear like this.

9 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Bibliography

The material in this book has been selected from the content of Packt's video
Learning AWS Lambda by Markus Klems to provide a specific focus on learning
to build and deploy serverless apps on AWS.

Getting Started with AWS

Amazon Web Services (AWS) is a collection of web services that together
make up a cloud computing platform that can help make an organization more
efficient. It offers a broad set of global computing, storage, database, analytic,
application, and deployment services. AWS is very beneficial as it is highly
flexible and very easy to use. It is also very cost-effective and reliable, with high
performance and scalability.

In this chapter, we are going to take a look at fundamental AWS concepts, such
as cloud service usage and pricing models. We will explore the AWS web
dashboard, the so-called Management Console. On the Management Console,
we will take our first steps with Lambda and the API Gateway Service.

Now, we are going to have a look at the following topics:

Introduction to the fundamental concepts of AWS
AWS account walkthrough

AWS Lambda

AWS API Gateway

Installation and setup guide

Before going any further into how to use AWS, let's first create and set up an
AWS account. This is a prerequisite for getting started with programming AWS
Lambda. Here, I'm going to show you how to sign up for an AWS account and
then I will show you how to create a special IAM user with administrator access
permissions. After that, I'll show you how to set up a local development
environment with AWS credentials. So let's dive in:

1.

w

First, open the web browser on the main website of Amazon Web Services,
https://aws.amazon.com/

Click on the Create an AWS Account button to create a new AWS account
Select the I am a new user radio button and enter your email address

Then, fill out the rest of the information and go through the sign-up process:

aWs

Signine

Email address of your AWS account

AM user, enter your account ID

o
nstead.

“ AWS Accounts Include
12 Months of Free Tier Access

New to AWS? Including use of Amazon EC2,
Amazon 33, and Amazon DynamoDB
Create a new AWS account

Visit aws.amazon.com/ree for full offer lerms

Once the account has been created, sign in to the AWS Management Console.
More information on the console will be provided later on. For now, click
Services in the drop-down menu and search for 1an. Click on IAM to navigate to

https://aws.amazon.com/

the Identity and Access Management dashboard. Here, I am going to show you
how to create a special IAM user that has certain permissions to use AWS
services on my behalf. This is a good security practice. You shouldn't use your
root account credentials for programmatically accessing Amazon Web Services.
It could create problems for you—for example, you could accidentally publish
your AWS credentials on GitHub or somewhere else where other people can see
them, and using these details, they could then use your AWS services. If this
happens to you, it's pretty easy to use IAM to simply delete your user and revoke
these permissions:

® 0 @ /gy amazonWeb Services Sign-in % § 1AM Management Cansole % ' 5{3 Step 1: Launch an Amazon EC X || (=]

<~ C @& Secure | hitps://console,aws.amazon.com/iam/hometregion=

Services v Resource Groups ~ * [\ booksl @ te-books * Global ¥ Support ~

Search IAM « Welcome to Identity and Access Management Feature Spotlight
IAM users sign-in link:
Dashboard o =
https://te-books.signin.aws.amazon.com/console (7] | Customize O ;)
Groups s n.]
1
s IAM Resources ‘
Roles Users: 5 Roles: 20
Palicies Groups: 2 Identity Providers: 0
identlty providers Customer Managed Policies: 7 < >
Account settings Security Status @I 4 out of 5 complete. Additional Information
Credential report . i
" A\ Activate MFA on your root account v IAM best practices
IAM documentation
%3 Create individual IAM users v ’
Encryption keys ' Web Identity Federation
: e Playground
Use groups to assign permissions v

Policy Simulator

Apply an IAM password policy v Videos, |AM release history

and additional resources
Rotate your access keys v

. Feedback e English (US) © 2008 - 2018, Amazon Internet Services Private Ltd. or its affiliates. All rights reserved Privacy Policy Terms of Use

In this tutorial, I'm going to create a group and an IAM user to perform the
exercises. After we are done with the tutorial, you can simply delete the user and
the group.

Let's start by creating an IAM group. Set up a group name. For this tutorial, I am
naming the group 1earninggroup. For simplicity, what I'm going to do is give my
group administrator access. If you're more paranoid, you can restrict this further,

but then you might have to deal with a bit more hassle. I think for the purposes
of this tutorial, and assuming that you will delete this group and the user later on,
it's fine to go with administrator access. Click on Next Step and Create Group.

Now I'm going to create a new user. Click on Users | Add User. Here, I will give
my user the name 1earninglambda, and I'm going to select the programmatic access
checkbox. This will create an access key ID and a secret access key so that you
can programmatically use Amazon Web Services:

[@ @ ' @ Amazon Web Services Sign-In X | § 1AM Management Conscle X e

&« C @ Secure | hitps:/feonsole.aws.amazon.corm/iam/bameFregion=us-cast-14usersnew?stepadetails o ¥ i

Services ~ Resource Groups ~ % [l booksl @te-books + Global ~ Support ~

Set user details

‘You can add multiple users at once with the same access type and permissions. Learn more

User name*

© Add another user

Select AWS access type

Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* Programmatic access
Enables an access key ID and secret access key for the AWS AP, CLI, SDK,
and other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management
Console,

. Feedback G English (US) © 2008 - 2018, Amazon Internet Services Private Ltd. or its affillates. All rights reserved. Privacy Policy Terms of Use

In the next step, I will show you how to set up your local development
environment with the access key ID and the secret access key ID so that you can
use AWS from within IDEs, such as Eclipse or Visual Studio, or through
development frameworks, such as the Serverless framework. If you want, you
could also give your new IAM user AWS Management Console access. Click on
Next Permissions. I added my IAM user to the 1earninggroup and now I'm going to
create the user. Once the user has been created, you will be provided with the

access key ID and the secret access key ID. Copy both of them into a blank text
file as you will need them for the next step. Copy both of them into a text editor:

AKIAIWRW3LZDPQIY3TPQ
vIkIjVVCdOpDWTBOLJIDKtVi3+MV1YhkD1lyBF79z7

Now, I'm going to show you how to set up your local development environment
so that you can programmatically access AWS services from within your local
development environment. This is used by a number of IDEs, such as Eclipse or
Visual Studio, and other development frameworks, such as the Serverless
framework. I'm going to show you how to do this for macOS. It works in a
similar way for Linux.

So the first thing that we need to do is create a hidden directory named aws in
your home folder. I created a hidden directory, and now in that directory I will
create a file named credentials. In that file, I'm going copy my access key and my
secret access key in the following format. What this does is specify the IAM
profile that I want to use:

mkdir ~/.aws
touch ~/.aws/credentials

This is the default IAM profile that my IDE or development framework is going
to use with the following access key ID and secret access key credentials. After
you have entered the content into your credentials file, it should look like the
following:

[default]
aws_access_key_ id=AKIAISSXZB2PNT6VVG3Q
aws_secret_access_key=ybv3rDoNNJDdbFO19XWxVaHvOt8bYF5pOhU5g

You need to set up your own access key ID and secret access key, because the
credentials that we have been using will soon not exist anymore:

| cat ~/.aws/credentials

Now I am going to explain how to set up your AWS credentials file on your
operating system.

Set up your local development PC/laptop with AWS credentials

If you are using Linux or macOS, you should create a hidden directory, .aws, in

your home folder. If you're using Windows, you should create a hidden AWS
directory in your user's profile directory. Then you copy the content, your access
key ID, and the secret access key.

Installing the Serverless framework

To install the Serverless framework, you basically need to do the following:

¢ You need to install Node.js. When you install Node.js, the Node package
manager will be installed.

e Then you can use npm, the Node package manager, to install the Serverless
framework by typing npm insta11l -g. This will initiate a global installation so
you can launch the serverless command from anywhere on Terminal. Type
npm install -g serverless into Terminal to install the Serverless framework
using the node package manager.

0 You can also fOllOW the guide At nttps://serverless.com/framework/docs/providers/aws/qguide/installation/.

https://serverless.com/framework/docs/providers/aws/guide/installation/

Introduction to AWS

Let's move on to the first official section of this chapter, which gives you an
introduction to AWS. In this section, we are going to take a look at Lambda
usage and pay-per-use pricing, and also where to find documentation and other
developer resources:

1. Let's go to the home page for aws.amazon.com/1ambda, as shown in the following
screenshot:

C | & Secure https://aws.amazon.com/lambda/ a#|s bl

®
AWS Lambda

Run code without thinking about servers.
Pay for only the compute time you consume.

Get started with AWS Lambda

Product Details Pricing Getting Started Partners FAQs Documentation

2. Head over to the Documentation page. The Documentation page gives you
links to many useful resources, such as SDKs and tools. But, for now, let's
take a look at the Developer Guide.

3. The Developer Guide gives us a lot of useful background information on
how Lambda works.

4. Click on the section called Building Applications with AWS and click on
the Event Source Mapping:

B Building Applications with AWS
Lambda

) Event Source Mapping
Supported Event Sources

Deploying Lambda-based
Applications

5. Scroll down a bit and you will be able to see an example of how we can use
Lambda, shown in the following screenshot:

AWS Account

3 g
*))})))) lln .
. poriE il

Amazon S3 Execution
s AWS Lambda Fala
~ 2 , 4
User i

—_—
1 \J_':...-—-'

' — Lambda | i & Access
Notification function | 7., ===l policy

Source configuration
bucket

In this example, Amazon S3 pushes events and invokes a Lambda function.
Amazon S3 (or Amazon Simple Storage Service) is a scalable web service for
storing and retrieving large amounts of data. In this example, we have a user
who uploads a file into an Amazon S3 bucket. This triggers an object-created
event. The object-created event is detected by Amazon S3, which triggers S3 to
invoke our Lambda function. The Lambda function is associated with an
execution role. The execution role gives our set certain permissions. So, in this
scenario, Amazon S3 needs to have permissions to invoke our Lambda function,
otherwise any other service would be able to invoke our Lambda function, which
we want to avoid. So, if these permissions are given, our Lambda function is
invoked with the event data from our Amazon S3 service invocation. This is also
referred to as the push event model, but there's another way to use AWS
Lambda. Let's scroll down a little bit to the next example:

P R e
| 2 b
‘I l J
“ b o

-
S L

1 Sy st =8
Amazon E Shehp
Kinesis iy Execution

2 n role

Custom app U D q f_ D \7 ;:‘f:; t
Stream mapping

% function

Here, we have a stream-based service. In this example, Lambda pulls events
from an Amazon Kinesis stream and invokes the Lambda function. On the left-
hand side, you can see a custom application that writes data on a Kinesis stream.
On the right-hand side, our Lambda function continuously picks up pieces or
records from this stream. Again, we have an execution role associated with our
Lambda function, but in this case it works the other way around. In this case, we
need to give our Lambda function permission to access the Kinesis stream
because here we are in the so-called pull event model. Whenever we pick up a
new record, the Lambda function is executed.

Cloud service pricing

Now let's take a quick look at cloud service pricing. Cloud services work quite
differently from traditional web hosting, and this also applies to pricing. With the
traditional web hoster, you typically sign up for a long-term contract, maybe one
year or two years, and you pay for the resources whether you use them or not.
With cloud services, this works quite differently. With cloud services, you only
pay for the resources that you actually use with very fine granularity. The
downside of this is that the pricing model becomes a bit more complicated:

Compute Management Tools Mobile Services
EC2 CloudWatch Mobile Hub
Lightsail & AWS Auto Scaling AWS AppSync
Elastic Container Service CloudFormation Device Farm
Lambda CloudTrail Mobile Analytics
Batch Config
Elastic Beanstalk OpsWorks

Service Catalog
Systems Manager

AR & VR

Amazon Sumerian

Waeqge Trusted Advisor
EES SN Saei @ Application Integration
Glacier Step Functions
Storage Gateway E:j] Media Services Amazon MQ
Elastic Transcoder Simple Motification Service
— Kinesis Video Streams Simple Queue Service
% Shillasn MediaConvert SWF
RDS MediaLive
Dyna-mUDB Madiabaricaps Customer Engagement
ElastiCache MediaStore
Amazon Redshift MediaTailor Amazon Connect

d‘—{:_) Migration
AWS Migration Hub
Application Discovery Service
Database Migration Service
Server Migration Service
Snowball

@ Machine Learning
Amazon SageMaker
Amazon Comprehend
AWS Deeplens
Amazon Lex
Machine Learnina

Pinpoint
Simple Email Service

Business Productivity

Alexa for Business
Amazon Chime &
WorkDocs

As you can see in the preceding screenshot, each Amazon web service has its
individual pricing model. Typically, it breaks down into charges for the compute
capacity, storage capacity, and data transfer that you use.

Let's take a closer look at the pricing model of AWS Lambda. The pricing model
breaks down into two parts:

e First, you pay for requests, which is actually quite cheap. It's only 20 cents

for 1 million requests.

e The other thing that you pay for is duration, which is the time that your
Lambda function runs for. This time period is rounded up to the nearest 100
milliseconds. So, if you have a short-running Lambda function that only
runs for 50 milliseconds, you pay for 100. If you have a Lambda function
that runs for 910 milliseconds, you pay for 1 full second. You also have to
pay for the amount of memory that you allocate to your function. You can
configure your Lambda function with different levels of memory. You then
get charged this fixed price, price constant, for every gigabyte-second that
you use.

Let's take a quick look at a sample calculation. When you scroll further down in
the page, you will see different pricing examples. Let's have a look at the first
pricing example.

Pricing example

In this example, you will configure your Lambda function with half a gigabyte
of memory. We will assume that the Lambda function is called 3 million times
within one month. Each Lambda function, we will assume, runs for one second.
With this in mind, our monthly compute charges would be calculated as follows:

Monthly compute charges

The monthly compute price is $0.00001667 per GB-s and the free tier provides 400,000 GB-s.
Total compute {seconds) = 3M * (1s) = 3,000,000 seconds

Total compute (GB-s) = 3,000,000 * 512MB/1024 = 1,500,000 GB-s

Total compute — Free tier compute = Monthly billable compute GB- s

1,500,000 GB-s — 400,000 free tier GB-s = 1,100,000 GB-s

Monthly compute charges = 1,100,000 * $0.00001667 = $18.34

Given these details, we need to calculate the total amount of time that our
Lambda function is running for: 3 million invocations X one second per
invocation is equal to 3 million seconds. Then we calculate the compute capacity
that is used during these invocations. We use Lambda functions for 3 million
seconds, and each Lambda function is allocated with half a gigabyte of memory,
so we use 1.5 gigabyte-seconds. However, Lambda comes with a free tier, so up
to a certain level you get compute capacity and requests for free. So if you
deduct these from your calculation, then you end up with 1.1 gigabyte-seconds.
To calculate this, you multiply that with your fixed price constant and you end
up with roughly 18 dollars per month:

Monthly request charges

The monthly request price is $0.20 per 1 million requests and the free tier provides 1M requests per

month.
Total requests — Free tier requests = Monthly billable requests
3M requests — 1M free tier requests = 2M Monthly billable requests

Monthly request charges = 2M * $0.2/M = $0.40

You must also pay for request charges. However, this only costs 20 cents per
million requests, and the first million requests are free, so you only have to pay

for 2 million requests, which in other words will cost you only 40 cents.

So your final calculation for the monthly charges will amount to roughly 18-19
dollars per month (both the compute and request charges).

The next section is about the AWS web dashboard, the so-called Management
Console. So let's dive into that!

AWS Management Console

After reading the previous section, you will be familiar with Lambda usage and
pricing models. Now we are going to explore the AWS Management Console.

In this section, we are going to take a look at how to navigate the Management
Console, how to switch between services, and what Amazon Web Service
regions are. Get onto the landing page of AWS, aws.amazon.com. Sign in to the
Management Console by clicking on the button in the upper-right corner. Once
signed in, you will see a navigation bar on the top. On the left-hand side, there's
a Services dropdown. You can see all the Amazon Web Services that are
available to us, as shown in the following screenshot:

Compute @S Developer Tools D’ﬁ[Analytics Application Services
EC2 CodeCommit Athena Step Functions
EC2 Container Service CodeBuild EMR SWF
Lightsail & CodeDeploy CloudSearch AP| Gateway
Elastic Beanstalk CodePipeline Elasticsearch Service Elastic Transcoder
Lambda Kinesis
Batch ; Data Pipeline
Management Tools QuickSight @J Messaging
CloudWatch SQs
] storage CloudFormation SNS
33 CloudTrail @ Artificial Intelligence SES
EFS Cenfig Lex
Glacier OpsWorks Polly =) »
Storage Gateway Service Catalog Rekognition Business Productivity

@ Database

RDS

Trusted Advisor
Managed Services
Application Discovery Service

Machine Learning

@ Internet Of Things

WorkDocs
WaorkMail

b

Desktop & App Streaming
WorkSpaces

DynamoDB AWS loT
ElastiCache ﬁ? Security, Identity & Complia. ..

These services are all clustered by service category; for example, compute
services such as EC2-Lambda are also in this category. We also have storage
services, such as S3, the simple storage service. We also have database services,
such as DynamoDB, a database service that we will use later. Finally, there are
also application services, such as API Gateway. You can also pin certain services
to your navigation bar to access them more quickly. Click on the little pin button
and you can drag down a service or drag up a certain service. Click the little pin
button again; now it's stuck to your navigation bar.

http://aws.amazon.com

Regions

One concept that is important to know about is the concept of regions. I'm
currently in the North Virginia, or US East 1, region. This is the default region
for all Amazon Web Services. If I click on this drop-down menu, I can see other
regions, such as Ohio, Northern California, Ireland, Frankfurt, and so on. Each
region corresponds to an Amazon Web Services data center, and most services
are specific to a certain region, so if you create resources, they are bound to the
particular region that they were created in. If you switch region, you won't see
resources that you created in another region. Moreover, not all services are
available in all regions. If we click, for example, on Lambda, then we can see
that Lambda is available in Northern Virginia, but it is not available in Canada
Central, in Asia Pacific Mumbai, or in South America, at least not at the time of
writing. So it will typically take some time before all regions catch up and
support all services. In this tutorial, I will use the EU Frankfurt region, and I
would advise that you use the same region so that what I show you is consistent
with what you are doing.

So if you use a service in a certain region, it typically has a region-specific
endpoint. You can find more information about regions and endpoints at

docs.aws.amazon.com/general/latest/gr/rande.html.

The following screenshot shows regions where Lambda is available:
AWS Lambda

Region Name Region Endpoint Protocol
US East (N. Virginia) us-east-1 lambda.us-east-1.amazonaws.com HTTPS
US East (Ohio) us-east-2 lambda.us-east-2.amazonaws.com HTTPS
US West (N. California) us-west-1 lambda.us-west-1.amazonaws.com HTTPS
US West (Oregon) us-west-2 lambda.us-west-2.amazonaws.com HTTPS
Asia Pacific (Seoul) ap-northeast-2 lambda.ap-northeast-2.amazonaws.com HTTPS

Asia Pacific (Singapore) ap-southeast-1 'lambda.ap-southeast-1.amazonaws.com HTTPS

Asia Pacific (Sydney) ap-southeast-2 lambda.ap-southeast-2.amazonaws.com HTTPS

Asia Pacific (Tokyo) ap-northeast-1 lambda.ap-northeast-1.amazonaws.com HTTPS
EU (Frankfurt) eu-central-1 lambda.eu-central-1.amazonaws.com HTTPS
EU (Ireland) eu-west-1 lambda.eu-west-1.amazonaws.com HTTPS

EU (London) eu-west-2 lambda.eu-west-2.amazonaws.com HTTPS

In the next section, we are going to create our first Lambda function. Let's get on
with that!

AWS Lambda

In the previous section, we learned about the Amazon Web Service Management
Console. Now we will look into AWS Lambda. Here, we are going to take a look
at the Lambda web dashboard, the Lambda function blueprints, how to configure
and deploy the Lambda function, and how to test it—all from the Management
Console. So let's head over to the Lambda service.

8 To learn how to access the Lambda service, read the AWS Management Console section.

Once you are in your Lambda web dashboard, click on the blue Get Started Now

button to create your first function.

You can select from a number of blueprints, which give you Lambda functions
with a little bit of dummy code. You can filter by runtime, and since this is
volume one, we want to use Node.js. So click on Node.js 4.3:

l Node.js 4.3

v l T Filter

Blank Function

Configdfe your function from scratch.
Define the trigger and deploy your code
by stepping through our wizard.

custom

config-rule-change-triggered

An AWS Config rule that is triggered by

configuration changes to EC2 instances.

Checks instance types.

nodejs4.3 - config &

kinesis-firehose-syslog-to-json

An Amazon Kinesis Firehose stream
processor that converts input records
from RFC3164 Syslog format to JSON.

nodejs + kKinesis-firehose &

dynamodb-process-stream

An Amazon DynamoDB trigger that logs
the updates made to a table.

nodejs - dynamodb &

& < Viewing 1-90f48 > »

alexa-skill-kit-sdk-factskill

Demonstrate a basic fact skill built with
the ASK NodeJS SDK

B

nodejs - alexa

microservice-http-endpoint

A simple backend (read/write to
DynamoDB) with a RESTful API
endpoint using Amazon APl Gateway.

nodejs + api-gateway &

Let's use the Blank Function blueprint. If I want, I can create a trigger that
triggers my Lambda function. There are different kinds of triggers, but for the
first exercise, let's not select any trigger. Let's leave it empty and just click on the

Next button.

Now we need to enter some configuration information for our function, such as a
function name:

Name* | firstLambda| I
Description
Runtime* = Node.js 4.3 k -

The runtime is correct, so we will scroll down a little bit. Here you can see that I
have a function handler, as shown in the highlighted portion in the following
code:

exports.handler = (event, context, callback) => {

// TODO implement
callback(null, 'Hello from Lamda');

}

This function will be assigned to the exports.handier property, which is then
exported through the Node.js export. My Lambda function handler takes up to
three arguments. The last argument, the callback, is optional. The first argument
is my event, so my Lambda function; is triggered through an event. The caller of
my Lambda function can pass in information. For example, if an S3 object-
created event invokes my Lambda function, I can retrieve object metadata. If an
HTTP request invokes my Lambda function, I can retrieve, for example, a JSON
body from the HTTP event. The second object is the context of my Lambda
function, I can access runtime information through this context object. Last but
not least, the optional callback function is the typical Node.js error-first callback
function. I can invoke it in this case without an error, so I will set the first
parameter, or the first argument, to null. I also set the result, the second
argument, to Hello from Lambda. So the caller will retrieve the message Hello
from Lambda when the Lambda function is invoked.

What we also need to do is set the right permissions for the Lambda function. So
scroll down to the Lambda function handler and role. Click on the Role
dropdown, and create a custom role. Select 1ambda_basic_execution in the IAM Role
dropdown and click on Allow. This will set the role to Lambda basic execution,
as shown in the following screenshot:

Handler* | index.handler (]
Role* = Choose an existing role * 8

Existing role* = lambda_basic_executiok * | O

You can even configure the amount of memory that you want to use in your
Lambda function by scrolling down. Remember, the more memory you give it,
the faster it executes, but the more you have to pay. Let's stick to the smallest
amount, 128 megabytes. You can also specify a timeout so that if the Lambda
function doesn't terminate within this amount of time, then it times out. Let's
leave it at the default of three seconds.

Scroll down and click on the Next button. Have a look at the settings, scroll
down, and click on Create Function. You will be able to obtain similar details to
those shown in the following screenshot:

Congratulations! Your Lambda function "firstLambda” has been successfully created. You can now click on the "Test” button to input a test event and test your
function.

Code Configuration = Triggers = Monitoring 0

Code entry type = Edit code inline -

1- exports.handler = (event, context, callback) = {

2 /7 TO0O implement 1
3 callback(null, 'Hello from Lambda'};

4 L

Congrats! You have created your first Lambda function! Let's test it.

Click on the Test button and this will execute the test that results in Lambda
saying Hello.

use the event in my simple Lambda function at all, it doesn't matter what is pasted—simply

8 You can also configure your test event in this way and give it sample event data. Since I don't
click Save and Test.

AWS API Gateway

In the previous section, we created our first Lambda function. Now let's explore
the API Gateway Service. Let's take a look at the API Gateway Service web
dashboard. We will use it to create a new API and then connect that API to our
Lambda function. Last but not least, we will test our API, and through our API,
we will invoke the Lambda function. So let's start.

Log in to the Management Console in the Frankfurt region where you can create
your first Lambda function. Now let's go to the API Gateway Service. If you
don't have an API gateway, click on Let's Get Started. Amazon might ask you to
import an API. Import it, and once done, you will be able to see a reference API
that can be used to learn more about APIs, but it will be a bit too complex for
our first use case. So, let's create a simpler API by clicking on the Create API
button. Create a new API and give it the name rirstap1. After that, click on create
API.

So now I have an API, and it can configure a couple of things, but for now, let's
just create a resource that can be found in the Actions button, as shown in the
following screenshot:

Actionty ¢/ Methods
RESOURCE ACTIONS

Create Method

Create Resource

Enable CORS

Edit Resource Documentation

APl ACTIONS
Deploy API
Import API
Edit APl Documentation
Delete API

I will take a REST resource and name it foo. It will get the resource path foo.
After this, I will click on Create Resource. A resource alone is not enough; I also
need a method. So let's click on create method and select an HTTP cetr method, as

seen in the following screenshot:

ffoo

v x
ANY
DELETE

cer [|
HEAD
OPTIONS
PATCH
POST
PUT

Click on the little checkmark. Et voila! We have a simple API with one resource,
foo, and a eeT method:

/foo - GET - Setup

Choose the integration point for your new method.

Integration type @ Lambda Function @
HTTF &
Mock @
AWS Service @

Use Lambda Proxy integration 1]

Lambda Region

4k

Now we can integrate it with different kinds of services. We want to integrate it
with our Lambda function, so the first radio button is correct. We select the
region. In our current example, we are in the Frankfurt region and our Lambda
function is also in the Frankfurt region, so select eu-centrai-1, which is the
Frankfurt region, and then type in the Lambda function name. I gave it the name
firstLambda. Click on Save.

Now the API gateway will ask you if you give the API gateway permission to
invoke your Lambda function:

Add Permission to Lambda Function

You are about to give AP| Gateway permission to invoke your Lambda function:

arn:aws:lambda:eu-central-1:186706155491:function:firstLambda
k

So remember from the beginning that you need to give your API permission to
invoke your Lambda function; otherwise, just anyone can invoke your Lambda
function, which you don't want. Click on OK.

Now, we have created an integration between our API and our Lambda function.
Let's click on the little Test button, as shown in the following screenshot:

® Method Request ® Integration Request ®
TEST
? Auth: NONE Type: LAMBDA
ARN: arn:aws:execute-apieu- Region: eu-central-1
central- >

1:188706155491:haagakx41h/*/C

&
3
o
o
-]
o =
2 3
© b
Method Response ® Integration Response @ g_
o
4h]
HTTP Status: 200 HTTP status pattern: - 2
Models: application/json =>

Qutput passthrough: Yes
Empty put p g

Once you click it, you will be able to execute an HTTP GET request by scrolling
down the page and clicking on the TEST button.

Within 90 milliseconds, we will get a response back—Hello from Lambda, as
seen in the following screenshot:

Request: /foo
Status: 200
Latency: 90 ms
Response Body

"Hello from Lambda"

X
Response Headers

{"X-Amzn-Trace-Id":"Root=1-58%al6ee-45e546c29c2al
6e41d65979b" , "Content-Type": "application/json"}

Logs

Execution log for request test-request
Tue Feb @7 18:50:22 UTC 2017 :
for request: test-invoke-request

Tue Feb @7 18:5@:22 UTC 2017 :

Resource Path: /foo

Tue Feb @7 18:5@:22 UTC 2017 :

h: {}

Tue Feb @7 18:5@:22 UTC 2017 :

ry string: {}

Tue Feb @7 18:5@:22 UTC 2017 :

ders: {}

Tue Feb @7 18:5@:22 UTC 2817 :

y before transformations:

Starting execution
HTTP Method: GET,

Method request pat
Method request que
Method request hea

Method request bod

So it looks like we really invoked our Lambda function, but can we be sure?
Let's check. Go back, and click on the foo resource and then click on the cer
method. Now we can see our integration again, and on the right-hand side, you
can see the Lambda function that I have integrated my API with. Click on it and
you will be directed to the Lambda dashboard with your Lambda function. Let's

take a look at the Monitoring tab:

CloudWatch metrics at a glance (last 24 hours)

Invocations = Duration -

[
o

20:00 4:00 12:00 @ 20:00 4:00 12:00

View logs in CloudWatch

@ Errors < @ Throttles 5

g e
20:000 4:00 12:00 20:00 4:00 12:00

As you can see, it has in fact just been invoked—a couple of times, actually.

Summary

In this chapter, we learned a couple of things: how to navigate the AWS web
dashboard, and how to navigate the Management Console. We also created and
tested our first Lambda function and then we created a REST API and connected
it to Lambda. Then we invoked the API, and through the API, we invoked our
Lambda function. As you can imagine, it can become quite tedious to create
more complex applications if we do it all on the Management Console. The
Management Console is great for getting started, but it's not the right tool for
building serious applications. It would be great if there was a programmatic
framework that would help us to do that. Thankfully, there is. In the next chapter,
we will explore the Serverless framework, which is a development framework
that helps you to build serverless applications. See you there.

Exploring the Serverless Framework

In the previous chapter, we learned how to use the AWS Management Console to
create Lambda functions and APIs. Now, we will use the Serverless framework
to programmatically create APIs and Lambda functions. We will use the
serverless command-line interface to deploy and test our functions. This will
tremendously speed up our development processes.

The term serverless generally refers to applications that make heavy use of
third-party cloud services, such as AWS Lambda. These services are also
sometimes referred to as cloud functions, serverless microservices, or serverless
functions. This doesn't mean that there are no servers involved anymore, just that
you haven't installed to manage and operate these servers yourself. This is
handled by the cloud provider, who takes care of things like scalability, high
availability, security, performance, and so on. Here, we will be able to take a
deeper look at using the Serverless framework to programmatically deploy and
test Lambda functions, using the serverless command-line interface via local
function invocation and remote function invocation.

In this chapter, we are going to cover the following topics:

The Serverless framework

Creating a serverless project

Programming a lambda function with Node.js
Testing and debugging lambda functions

The Serverless framework

Here, we are going to take a look at the Serverless framework documentation.
We will then take a look at how to install it, and then we'll try out our first
commands.

Go to the main landing page of the Serverless framework, serveriess.con.

https://serverless.com/

€ - C | Secure | htips)/serverless.com vl

serverless lem Dus Tookt. Communly . By Eniepise

The way cloud should be.

$ npm install serverless -g

Login to you rless account
Serverless is your toolkit for deploying and operating ERGAEEEREE
serverless archiectures. Focus on your application, [EYCEIERESTEEEEREE
not your infrastructure. § serverless create --template hello-world

% Deploy to cloud provider

§ serverless deploy

Quick Start Docs Sign Up # Function deployed! Trigger with live url
| $ http://xyz.amazonaws con/hello-world

g P 500gle Cloud i
.:‘:'amazoq \0)(.J| o == Microsoft Azure ‘#‘ IBM Open'Ahisk

Platiorm

To find all the information that you need, click on Quick Start Docs. For now,
let's take a quick look at the installation section. The first thing that you need to
have installed is Node.js, and you will find some information on how to install it
on your local machine. For programming serverless, we need Node.js version 4
or higher. If you don't have Node.js already, please do so now, and then resume.

Serverless runs on Node 4 or higher. For installing, go to the official Node.js website,
a download, and follow the installation instructions. If you want to see if Node has been

¥ installed successfully, just run node --version in Terminal. You will be able to see the
corresponding Node version number printed out.

Once you open Terminal, the first thing that you need to check is if you have the
right version of Node installed. Here, I am using Node version 6, which is higher
than 4: node --version

Next, I'll type in a command using npm (node package manager) to install the
Serverless framework. It is better to install it globally so that it can be accessed
anywhere by Terminal, no matter which directory it is in. This will download all
the required dependencies and set up a path so that it can execute the serverless
commands for the command line: npm install -g serverless

Here, I have installed the newest version of serverless which, at the time of
writing, is version 1.6.1:

Now, I can type in the serverless command, as shown in the following
screenshot:

" Doctnentation: NEtps:/[serverless.con/franesork docs/

... (onfigure Serverless
Configures a new provider profile for the Serverless Framework
.. Create ne Serverless serviee
(reates 3 donaln Using the donatn nane defined 1n the serverless file
Deletes a donatn using the donatn nane defined 1n the serverless file
o eploy @ Serverless service
... Deploy 3 stngle function from the service
MMIMWMNMWMWM
oo List all the deployed functions and thetr versions
mmﬁmwnmmmmmhuwm
oo Tnstall @ Serverless service fron (ithub or @ plugin Fron the Serverless reglstry
o Ivoke & ceployed function
WMWfWMHMW
Qutput the logs of a deplosed function
””WMmmmawMMNMW
o Staulates APT Gateway to call your Lanbda functions offline,
o Stnulates APT Gatenay to call your Lanbda finctions offline sing backvard compatible initialization,
o Packages & Serverless service
wamwmhﬂwmm
v Tnstall and a0d a plugin to your service
HWMWWMHNMWBNWHMWHWW
v LUsts a1l avatlable plugins
e Search for plugins
v Brint your conptled and resolved config file
o Remove Serverless service and all resources
HmwwmkheMwamuumwhmme
... RolLback the function to a specific version
oo Endble or disable stats
hemumwum

.. Entts an event to a rumning Event Cateway
e Login or stgn up for the Serverless Platfom
cooor Logout from the Serverless Platforn

. Rins the Event Gateway and the Enulator

Plyatn
MﬂmmMMNM%%MMEthMMMMWMMSMmmmmmhmmWHmwmmmmuwwth%hWMMAMWMMMMWM

The previous screenshot shows all the sub-commands that can be used for the
serverless command-line interface. If you haven't completed the installation and
setup steps from chapter 1, Getting Started with AWS, you need to execute the
config credentials command, as given above. The Serverless framework needs to
access your AWS account to execute certain AWS commands on your behalf. It
needs to be able to create resources, modify resources, and delete resources.
Instead of typing serveriess, you can also use the sis shortcut:

=
e
s
o
=
"
=t
=

Now that we have installed the Serverless framework, let's create our first
serverless project.

Creating a serverless project

In the previous section, we installed the Serverless framework and tried out the
command line. Now, let's create our first serverless project. We are going to use
the Serverless framework to create a simple Node.js lambda function and a
REST API. Open Terminal and create a directory where you can place your
serverless project files. I named it app, but you can name it whatever you want.
Go to that directory and open your preferred IDE. I used the Atom editor. When
the Atom editor was opened in my empty directory, I used an Atom package at
terminal plus to open a new Terminal window inside my IDE. This makes it
easier because I don't need to switch between writing code and typing in
commands. So, let's type in a command to scaffold a serverless service:

| serverless create --template aws-nodejs

The command for creating a service is created, but it needs two more
parameters. The first parameter is a temp1ate, and here we specify the cloud
provider, in our case AWS, and the runtime, Node.js.

This command is a bit lengthy, so let's use a shorter command.

Instead of typing tempiate, you can type -t. And, instead of typing serverless, we
can type sis. Now, we need one more parameter, the name of our service. I call it
simple, the simple service. But, we can also make this shorter, -n:

| sls create -t aws-nodejs -n simple

Let's execute this command to create some boilerplate code. And there we go.
Two files have been created, the severiess.ym1 file which describes our project,
and a handler.js implementation of my Lambda function handler:

C:\Users\admin\ op\ ng-aus-lambda-master\javascript\blog-app»sls create -t aws-nodejs -n blog

Let's take a look at the serveriess.ym1 file first:

| service: simple

Here, you find the configuration for our service, the name of our service that I've
typed into the command line, the provider AWS, and our runtime Node.js. There
are also some other configurations.

provider:

name: aws
runtime: nodejs4.3

Most of them can stay in the defaults, but the region is not right. I want another
region. So, the default region is in us-east, North virginia, and I want to use
Frankfurt, so let's change that. Let's change it from us-east-1 t0 eu-central-1:
provider:
name: aws
runtime: nodejs4.3

stage: dev
region: eu-central-1

There are some more configurations down here, such as IAM permissions, and
we'll go into detail on that later. Scroll down a bit further and you will find our
Lambda function, as shown next:

functions:

hello:
handler: handler.hello

The function name is he11o, and the function nandier is specified as well.

It references a file, our handier. js file that we created earlier, and that file exports
a hello module. Let's take a look at the hand1er.js file:

'use strict';

module.exports.hello = Kevent, context, callback) => {
const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Go Serverless v1.0! Your function executed success
input: event,
ik
+

callback(null, response);
// Use this code if you don‘t use the http event with the LAMBDA-
integration

// callback(null, { message: 'Go Serverless v1.0! Your function
executed successfully', event });

}

You will see that it exports a function, our handler named hei10. And, the
signature looks familiar to what we have seen before. We have an event
parameter, context parameter, and an optional callback parameter. The
boilerplate code specifies a response that says co serveriess and plays back the
event that has been received. Then, it invokes a callback, an error-first callback,
without an error, where we can specify the response.

Now, you can deploy this function using sis deploy. We need to give it the
function name hello, for -:

| s1s deploy -f hello

Now, this takes a little time. What happens behind the scenes is that serverless
sets up some cloud formation templates, uploads them into an S3 bucket in our
AWS S3 account, and uses these templates to create other AWS resources, such
as our Lambda function. Now, our Lambda function has been deployed into the
eu-central-1 region using the dev stage:

dev
eu-central-1
og-dev

DELETE - tp / .execute-api.eu-c ral-
GET - https D execute-api.eu-central-1.amaz

We haven't deployed any endpoints yet. And, the function name is simp1e, the
name of our service; dev is the name of our stage; and ne11o is the name of our
function. We can invoke the remote function from our command line by using
sls invoke and giving it the function name ne110. And, as you can see, we get back
the message that we have specified in the handier.js boilerplate code:

sls invoke -f hello

{
"statusCode": 200,
"body": "{\"message\":"Go Sreverless v1.0! Your function executed
successfully!\", \"input\": {}}"

}

If you want to do a lot of testing, it would take too much time to always deploy
the function and then invoke the function via sis invoke, SO you can also locally
invoke the function. Simply add the parameter sis invoke local:

| s1s invoke local -f hello

This will call our function locally. Let's take an example. Let's change our
function in the current boilerplate code to He11o wor1d: as shown in the following
screenshot:

'use strict';
module.exports.hello = (event, context, callback) => {
const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Hello World!',
input: event,

1)

I've only changed my code locally. I didn't deploy it, so if I invoke it locally
again, it sShows wello worid: as shown here:

sls invoke local -f hello

{
"statusCode" 200,

"body": "{\"message\":\"Hello World!\", \"input\":\"\"}'

If the remote function is invoked, it Shows co serverless:

sls invoke -f hello

{
"statusCode": 200,
"body": "{\"message\":"Go Sreverless v1.0! Your function executed
successfully!\", \"input\": {}}"

}

Now, what we need to do is to create an API. Let's go back to the serveriess.ym1
file and scroll down a little bit further to our function. Here, we can already see a
template; what we need to do is to create an API. Delete the comment code and
comment out the events property, the nttp property, the path, and the method. What
this will do is it will create a simple REST API for us, specifying a get method
on this resource path. Let's choose a different resource path. Let's call it ne11o, as
follows:
functions:
hello:
handler: handler.hello
events:
- http:
path: hello

method: get
cors: true

Now, let's run sis deploy again, and once sis deploy has been executed, we will
have an endpoint for our API:

eu-central-1
simple-dev

central-1.amazon
entral-1.amazonaw
amazonaws
amazonaws.com/de
central-1.am
tral-1.amazonaws.com/de

Try it out in the browser. Copy and paste the URL and it will respond back with
our message, Hello World!, and also with the event that it received from us, as
shown here:

"H=1In boeld”, 4 ap

" resurre”: "fhelln’, "nath”s

PhelTn”, "t soberhnn "L "F ", "hearers” o TArcept ™ "raxt /NN, appldeatdon xhewleenl applf earion /s 0=, 3
Prato”:" .

ue®, ‘(o rontZs-obileViever"s ale!, "Coudront-Ts-Srart e ”fn udronz-Is-Tal " "Cloudre
Ent II: illah.¢ ’ummus N 16.0; Winkd; bt ,\UFLW‘MLUW 3b {KHAL, Like becko) Lhrone/o/. . 3486, A& Saferi b3
"KehnarrT - 10" "R L=1-5b 156 f 16 d fd e feabole", "K-Furmarked-F il B, Uil

g ; Path":" /hello","rttptethad":

HAge uEh, m—gﬂ/armg, " w i “Areepr-Faracing”s grdp, deflate, b, "Accent-lanpuags”:"en-

try "IN, "lost" "L hnh4trh.enccute -
544 3 8b b1 2.cloucfront. nat

Purl": "33, "
5"y reguestTina"s 11/ Tun/EB 3010645

'

i Ued-

null, "pethParanzters”snull, stapeVariables"s
* MSRRRAPA", "rntarn] " "KTTRA \","ET‘REP
[co!n]tu\cmhm‘ml d"s ml] "accoun tld' L, "cogntoldencityld"snull," cal le~":null,"
xbd) Opplaebeit/ss) g6 (KHINL, Like oecka) Lhrome/ns .y 2w ¢ safard/odr 26", "Loer"smull:

" e MWP i h17e7427-AdA3-112R-

£":"182,7%6. 15 omltwthtnhmtlonTy‘;t wnull," aqmtumthm' cationPravider”null, "userden"srull, "wscrkgent ' Wozilla/5.6 (dindons T 10.3; Winéd;
"igkahagtnn” } hc(y Ll "dsbasebdzncoded " falia))

Programming a Lambda function
with Node.js

Now, let's learn a little bit more about programming L.ambda functions with
Node.js. We are going to take a closer look at the function handler, and in
particular its arguments, that is:

e Event objects
e Context objects
e (Callback objects

Open the hand1er.js file and delete the code that's in the function body. One way
to learn about the event and context object would be to log them out on the
console:

'use strict';

module.exports.hello = (event, context, callback) => {
console.log('event is', event);

+
Let's see what this gives us.

I am invoking the function locally to see what the output is with the function
name set as hello:

sls invoke local -f hello
event is

Ok, my event, apparently, is null. Let's see what the context is, as shown next:

module.exports.hello = (event, context, callback) => {
console.log('event is', event);
console.log('context is', context);

}

The context actually gives me an object. Since we are invoking it locally, some
information from this emulated or mocked local environment, for example, a
hard coded string that says id for the AWS request ID, memory limits in
megabytes, and so on, is shown here:

C:\Users\admin\Desktop\programming-aws-lambda-master\javascript\blog-app»sls invoke local -f hello

is { awsReguestId: '
eid: 'id’',
ouplame: '
reamhlame:
functionVersion: ;
isDefaultFunctionVersion: true,
nhlame: ‘simple-dev-hello’,
imitInMB: '1824°
cceed: [Function: C
n: fail],
[Function: done],
getRemainingTimeInMillis: [Function: getRemainingTimeInMillis] }

Let's change the code a little bit, and, instead of logging it out on the console,
let's send it back via our callback as it was before. But this time, we not only
give back the event but also some information from our context, such as the
remaining time in milliseconds, the function name, and the request ID:

let remainingTime = context.getRemainingTimeInMillis();
let functionName = context.functionName;
let AwSrequestID = context.awsRequestId;
const response = {

statusCode: 200,

ev: event,

rt: remainingTime,

fn: functionName,

aid: AWSrequestID

callback(null, response)

}

Let's invoke it locally first:

| s1s invoke local -f hello

Now, as shown in the previous screenshot, we get back the status code, the event
doesn't exist, response time is a hard coded value of 6,000 milliseconds, the
function name, and the hard coded ID.

Now, let's deploy our function and invoke it remotely:

| s1s deploy

Alright. Our function has been deployed:

eu-central-1
simple-dev

- cute-api.eu-central-1.ama
GET - https ravbi. ite-api.eu-central-1.amazonaws. com/
PUT - https fof=f ’ ite-api.eu-central-1.amazonaws . com/
DELETE - ht i.execute-api.eu-central-1.amazonaws.com/dev, icles
GET - https://nb2gqgavei.execute-api.eu-central-1.amazonaws.com/dev/articles
S
simple-dev-hello
createArticle: simple-dev-createArticle
readOneArticle: simple-dev-readOnefrticle
updateArticle: simple-dev-updateArticle
deleteArticle: simple-dev-deleteArticle
readAllArticles: simple-dev-readAllArticles

Once you invoke it remotely, you will observe the following:

"statusCode": 200,
"eV": {}'
"rt": 5998,

"fn": "simple-dev-hello",
"aid": "ca5f1156-ef@d-1le6-bdf4-df482d5dd82e"

Here, we can see that the remaining time in our remote execution is 5,998
milliseconds. The time, however, is specified by the default of six seconds, so at
the point when the remaining time was calculated, we had used two
milliseconds. Additionally, the ID of our request now also looks quite different
from our local execution.

However, the event is still empty. Let's change that. Let's invoke our function
with a synthetic event.

Create an event.json file and put a JSON object that says foo and bar, as follows:

Hfoon: "bar"

Once that is done, go to the handier. js file and invoke the local function with the

path to the event.json file. Instead of typing path, you can type -p, as follows:

| s1s invoke local -f hello -p event.json

And now, we get back the event that we have invoked the Lambda function with:

"rt": 6000,
"simple-dev-hello”,
. mige

And, if invoked remotely, you will get the same event because it invokes the
remote function with the local event in the event.json file.

OK. Let's take a quick look at the callback object. What happens if we don't
provide a callback object? Can we still execute our Lambda function? Let's try it
out. Let's invoke the local Lambda function. It doesn't throw an error, but it also
doesn't give us a response either. What happens if we invoke the callback
function without any arguments? It's basically the same as having no callback
function at all. What about invoking it with null? This has the same effect. Now,
how can we throw an error? We have an error-first callback function, so this
should give us an error.

Testing and debugging .ambda
functions

In the previous section, we learned about programming Lambda function
handlers. Now, let's explore testing and debugging.

Here, we are going to look at three different testing and debugging approaches:

e Using the Serverless framework
e Using Postman for testing our API
e Using the AWS Management Console

Let's go back to our nandier. js file from the previous section. There are a couple
things that should be changed. The response method should be changed back to
something that our API can work with.

Give it a body property with a stringiry JSON content, as shown here:

| body: JSON.stringify({

And, in the JSON content, get back the event in the remaining time from the
context, and then, instead of returning an error, we will return the response:

'use strict';
module.exports.hello = (event, context, callback) => {
let remainingTime = context.getRemainingTimeInMillis();
let functionName = context.functionName;
let AWSrequestID = context.awsRequestId;
const response = {
statusCode: 200,
body: JSON.stringify({
ev: event,
rt: remainingTime

1)

callback(null, response);

}

After that, invoke the function locally by using the synthetic event:

sls invoke local -f hello -p event.json

{

"statusCode": 200,
"body": "{\"ev\":{\"foo\":\"bar\"},\"rt\":5000}"

Now, let's add some console log statements to the beginning of the function, and
then log out the event and the context:

'use strict';

module.exports.hello = (event, context, callback) => {
console.log('event is', event);
console.log('context is', context);
let remainingTime = context.getRemainingTimeInMillis();
let functionName context.functionName;
let AwWSrequestID context.awsRequestId;

Once done, invoke the function:

C:\Users\admin\Desktop\programming-aus-lambda-master\javascript\blog-app> sls invoke local -f hello -p event.json
t is { foo: 'bar']

p
L J
is { awsRequestId: ‘id’,

i-hello’,
: caded8b77c427af260",

onVersion: :
sDefaultFunctionVersion: true,
functionhame: ‘simple-dev-hello’,
memoryLimitInMB: :
succeed: [Funct
fail: [Function
done:

EH”fDDH":H”haﬁi"},i”ﬁﬁi":ﬁﬁaﬁ}”

You should notice that the function has been invoked locally, and the console
output is seen right before the response from the callback. Deploy the function
and, once deployed, call the invoke command without the 10ca1 sub-command:

| s1s invoke -f hello -p event.json

This will get the response from the callback. However, you won't be able to see
the console log. So, how do we retrieve the remote logs?

Scroll over to the s1s command; you will notice a 10gs sub-command:

for the Serverless Framework

y
ogs of a dep
........ Show met for a speci

Try using the 10gs sub-command with the function name ne110 as a parameter:

| s1s logs -f hello

You will be able to see the logs that have been retrieved from the AWS account,
as shown here:

:\Users\adnin\Desktop\programuing-aus-1anbda-master\javascript\blog-appysls logs -f hello

This uses a service called CloudWatch. You can also see the console-10g Output
event, and the context as well:

ion: '$LATEST',

li

66: function:sinple-dev-hello® }

Also, as shown above, Amazon gives some additional information, such as the
duration used. So, in the preceding screenshot, we actually just used 60
milliseconds, but because it's rounded up to the nears 100, we are billed for 100
milliseconds. We have configured our Lambda function with 1 GB of memory,

but we only used 9 MB. Such information is also useful for cost-optimization
purposes.

Testing the API using Postman

Now, we are going to use Postman to test the API. If you don't have Postman
installed on your computer yet, you can get it at getpostman.con and install it on
your local operating system.

So, let's test the API. Open Postman and enter the URL that is to serve as the
endpoint for our service. To retrieve the URL, head back to Terminal. You can
get the information about our service by typing sis info, which will provide
several pieces of information including the required endpoint that is the URL.
Copy the endpoint and enter the URL. Select the appropriate HTTP method — in
our case, it's the get method—and send the request:

https://www.getpostman.com/

(bt
He bt View Helo

Nay [z

Hatoy

G v

v Ty
i

Bk

i Wy Wokspe =

+w

T eteRrh et et Lamaraa anioae

ket el 'FC:FA;:\F“‘

"CloudPrort Farwarded Prota™ "
"TufFrut-T
"ouf*n

"Dou"rort-
Uit etV alae'
" rot-Visser-Catry's "TH,

A" "EenbgBy
Mestnan Tober": "40350a Joba 4e5 ol 7
ezt "RostrRnRInt e 1.5,
"ia"t 1L #02h03R5aR oo Dbt doctcLoagfront et {ClaudPromt ',
ek Qe MGG R G B 312000 =
"elmzn-Trace-Ta"s "ot S aefa- O ADRRSATERR fhacackdl’,
"elomarced-Tar" "10036.10,0:8, W MLMLLEY,
“L-hoarteg-Aort" "Y',
"eTarwarced-“ro"; "tkps”
H
“ueryttroogloramtor s ll,
R N,
"shagharnatls” il
e ot {
"resourceld"; "adtghe",
"l el
“ptphatrod: "I,
"ertendecheqiestld”s "THRLIT AT,
"requestTine’s 13/ /080 10: 8118 R,
Tocth"s "devhelle’,
"R WA,
"woteal) ML,
by e,
"requestTinetaact” s 1S2RRIL0GE7,
"regesl 1" "defelbf-fesl-Ueb- e fLendeddTS
“irantiny' ! ¢
"rmtacientityolle’s mil;
"wroontld": null,
"roitolaentityla's mil,
Tt
"soureelps "L 7R L6 L0E',
"t ieniey mill,
"tomitoh thent cationType"t mill,
U kot el il
"R .,
yserdpent®: "Pustoanhuntine 7,13,
"l il

1
]
R

I

"oy nall,
“isbsebErcaced"s falie

L]

Aa bnvirgoment

Paramg

vof

T

ha

As shown previously, we get back the response, including the required event.

Testing and debugging via the AWS
Management Console

Sign in to our Management Console and go to the API Gateway Service. We will
see our new API that we created with a Serverless framework. Since we have
done this before, I will briefly recap the process. Click on the hello part and get
method, and click on the Test icon to get the following screenshot:

€ Method Execution /hello - GET - Method Test

Make a test call to your method with the provided input
Path
Mo path parameters exist for this resource.

You can define path parameters by using the
syntax {myPathParam} in a resource path.

Query Strings

{hello}

Headers

{hello}

Stage Variables

Mo F'stage variables exist for this method.

Scroll down and click on Test, which will give you the same information as
given previously in Postman.

Go back to our resource path and get method, and head over to the Lambda
function, which can be found on the right-hand side, as shown here:

aly-nap-a|dLUls epquen

afl

Once you get into the Lambda function, click on the Monitoring tab to view the
logs on the AWS Management Console dashboard. You will see some
CloudWatch metrics with various invocations and durations, as shown here:

Canfiguration Manitoring

CloudWatch metrics at a glance

View traces n X-Ray

Invocation count st 2 sy Ivocation duration Last 4 hours'¥ A Invacation errors Last 2 howrs ¥
Jump to Matrics [Jumg to Logs [A Jumg to Metics [3 Jumg to Legs [A Jamp to Matics [2 Juinp ta Logs [A
3
B0
@
Y
)5 } 05
oL L'A 1]
1800 12Jun L 12400 1800 12.Jun D00 1200 1800 12dun &0 1200
Count Mas Millisetonds Count
vy Milllseconds
Min Milliseconds
) Throttled invocations | Lagt 24 houssy Iterator age Last 24 haursy 0LQ errors [Last 24 houssy |
Jump to Matrics [JumptaLogs A Jump to Metiles [Jumg to Logs [A Jup £ Metrics [4 Jump to Logs [3
08 08 0B
05 08 0e
04 04 04
02 01 02
0 [}
1800 12Jun L iy 18 12 Jun &0 1200 1800 121un 0800 1200
Count Max Milliseconds Count

You can access the logs by clicking on View logs in CloudWatch, which will
show a number of logs that appeared over time for the Lambda function, as

shown as follows:

lter events

Time (UTC +00:00)
18612

v 090123
v 09:01:23
v 090123
v 090123
yo 0ANA
p o 111818
v 111819
y o 111819
y o 1118
IR

9

1
19

al 2016-06-11 (13:00:00) - 20150612 (13.00:C0) »

Message

Mo older events found for tha selacted date range. Adjust the dafe range
START Requestld: 2e2f561-Ge 1f-11e8-b0f-2dedd2133214 Version: SLATEST
2018-06-12T09:01:23 5407 262f66f0-6e1f-11e8-bolf-2dedd21 83214 eventis { foo: bar' |
2018-06-12709.01:23 607Z 262f66f0-6e11-11e8-belf-2dedd2183214 contat is { callbackWaitsForEmptyEventLt
END Requestld: 2e2f66f0-6e1f-11e6-be0f-2dedd2183214

REPORT Requesld: 262660-6e1f- 11e5-be0f-2dedd2183214 Duration: 70.29 ms Billed Duration: 100 ms Memy 2

START Requestid: defe5191-6e32-11e3-9a63-bb3=71b6obfd Version: SLATEST

218-06-12T11:18:18 9347 defe191-6e32-1128-9269-0b3eT1b500d 2vent is { resource: nello’ path: Thello' ¢

218-06-12T11:18:19.0427 defe5191-632-113-9a69-bb3e 7 1b36bid contet is { callbackWaitsForEmptyEvent]

END Requestid: 4efe5151-6e32-11e8-9a6%-0b 3T 1hbbbid

REPORT Requestld: defe5191-5e32-11e8-9a69-bb3e1h6bbfd Curation: 61.67 ms Billed Duration: 100 ms Mer
No newer events found for the selected date range. Adust the date range

Show in stream

F1806/12]
1806

@2

01806/ 2BLATESTI0Beb 01181
J[SLATESTIDGb011808..
2]BLATEST]0GcbO180..

7018

It takes a little bit of time for these logs to materialize, so if you invoke a remote
Lambda function and instantly (or after just a fraction of a second) you try to
retrieve the logs, you won't be successful. If you click on these logs, you can see
the event and context logs, which is the information that is retrieved with the
first approach using the Serverless framework. Using the Serverless framework,
it's much easier and much more convenient to retrieve these logs than clicking
through your AWS Management Console.

Summary

In this chapter, we learned how to use the Serverless framework to create and
test Lambda functions and APIs, and we tried out different approaches for API
testing, Lambda testing, and debugging. Now, we have all the things necessary
to build a real application, so in the next chapter, that's what we are going to do,
by building a serverless application.

Building a Serverless Application

In this chapter, we are going to build a web application using a combination of
different technologies. For that, we will again be using the serverless framework
with Lambda and API Gateway, but we will also use a couple of other AWS
services, particularly DynamoDB to preserve our data. We will also be using
Cognito to identify users, and then we will use S3 and CloudFront to deploy our
front app.

In this chapter, we are going to cover the following topics:

Building a stateless, serverless web application backend
Creating a stateful, serverless backend with DynamoDB
Creating a web client

Deploying a serverless frontend on CloudFront

Let's dive in!

Building a stateless serverless web
application backend

Here, we are going to build the stateless web application backend, and later on
we will add the database. This application will allow users to create, read,
update, and delete blog articles. Then we will deploy and test our little blog API.

Open the Atom text editor in the empty biog-app directory. Let's use the command
line to create some files:

| s1s create -t aws-nodejs -n blog
I have used sis create to create a new service, but with a new name—-biog.

This command line will generate two files, serveriess.ym1 and handier.js, as shown
in the following screenshot:

v [l blog-app

[E] .npmignore
[E| handler.js
E serwgless.yml

Open the serveriess.ymi file and delete some of the comments. Once that is done,
the next thing you must do is change the region. Here, I am deploying my
service in the Frankfurt region in eu-central-1, as follows:

service: blog
provider:
name: aws
runtime: nodejs4.3
stage: dev
region: eu-central-1

Now, scroll down to the function. You have to change the name of the Lambda
function from hello to something like createarticie. Once that is done, we need to
rename the module that gets exported to the handier. js file, as follows:

functions:
createArticle:
handler: handler.createArticle

Since the module that the Lambda function references as a handier function has
been renamed, you also need to rename it in the nandier.js file. So replace heiio
with createarticle, as shown in the following screenshot:

'use strict';
module.exports.createArticle = (event, context, callback) =>
const response = {
statusCode: 200,
body: JSON.stringify({

message: 'Go Serverless v1.0! Your function executed successfully!',
input: event,
1)
3

Once that is done, let's go back to the serveriess.ym1 file and add our API
Gateway:

functions:
createArticle:
handler: handler.createArticle
events:
- http:
path: users/create
method: get

So the things that must be changed are the path and the method. For consistency,
let's name the path createarticie, while the method should be named the post
method rather than the get method:

functions:
createArticle:
handler: handler.createArticle
events:
- http:
path: createArticle
method: post

Now let's deploy our service by typing sis deploy:

| s1s deploy

The following screenshot shows the deployed service:

er\javascript\blog-apprsls deploy

LALa

LA LA

[F

[Fa I I Ty]

s
s
s
s

eu-central-1
blug dev

[P

[

POST - http Cu
GET - https g8.execute- apl eu- -enfral 1.amazonaws. ca
PUT - http : g8.execute-apl.eu-central-1.amazonaws.c

LA

I i m

[15]
I=
r+
-
(]
=i
m

blnﬂ

e - U

blog- de; dElEtEA'

Next, let's use Postman to check whether the API also works. For that purpose,
we will need the endpoint that is provided in the preceding code. Copy the link
and open Postman.

In Postman, enter the request URL. Since a post method has been deployed,
switch the tab to Post and click Send:

U htrw -0
Hle bt View bl

i iy Worloaee *

Q - o beicomen: e
ey Tio tw Q

it KR e s o s (EE T

Pty W 3 ha

(g Cp o i §

"ML,

i "ClougFrort-Farverdes-Prote"s "hecpe”,
"Clouf rort:Is-Desktop”
*Linugerert-

il "Cloug

1t TR T TR 8-

15 “Coutrrt Viewr Crtry's "I,

i "l el AR ae e] e g
I Rortnin-Toke"s "S- JEH AL TAMFIEAR,
i -l otuwRunl .3

] "' L1 Ao

=

FAMt DYt ack, cLoustront et gt

i ehur-CFT8" Sl SkenL RS TELP D e DAOMIRR !
il T-Iraceelo, "ooteL- o0 /1) fbadihh ek caaniic,
2 " Fomiarced For" s "180.76, 16,020 15"

"F-Famaed- ') "W
" Fomarced Troto": "hiips"
& A

troferancters’) mll,
“pol{Peranclers”; wll,
staglartanles’
"requestlontent”. {

) resoreld'! B,

bl el e’
i
B afequactld", " !,
reeslTine's "1V 10 3,58 4
X
o
¥
i
Ei}
4
il
" "tomitoCaeitila’ pull,
g ‘aaller", nll
L "sarelg";)
i A ml
i gt od gntiratimTine" mi,
U] "togritodithenticationtrovider”s mll,
il "wsfn’; WL,
bl "uzznfgnt”: "PoctmanRintine/ 7 15",
2 ' il
}

A I
i Tpld"; "ehbadohd!
) i

L
% "hody"s null,
bl g flee
ik

3o

Now, you can change the file structure by going back to the editor and changing
it.

Let's do that!

Changing the file structure

Go back to the biog-app directory. The first thing we need to do before
restructuring the code is to create a subdirectory named articles, as shown in the
following screenshot:

~ M blog-app
> @ .serverless
> @l articles
[Z) .gitignore
El .npmignore
[E)] handiler.js

E ser hang ler.js

Now, move all the Lambda function handlers that are related to articles to the
articles file. Once this is done, you will have the createarticie function in the
handler.js file:

~ Il blog-app

> il .serverless
vki articles
handler.js

E] .gitignore
El .npmignore

E] serveriess.ymil

However, there are different ways in which you can structure your Lambda
function handlers and determine how many Lambda functions you want to
deploy per service. For instance, here I would like to have one Lambda function
per method; let's rename the handier.js file to create.js, thereby reflecting what the
Lambda function actually does. You also need to change the name of the handler
from createarticle tO handler:

module.exports.handler = (event, context, callback) => {

const response = {

statusCode: 200,

body: JSON.stringify({
message: 'Go Serverless v1.0! Your function executed successfully!',

input: event,

1)

We should also update our serveriess.ym1 file. Scroll down to the functions.

We need to change the function name and the function that should be exported.
Since the path of the function handler has changed, it will be in the articles
subdirectory under the filename create. The function that is exported is not
createArticle dlymore, but handier:

functions:
createArticle:
handler: articles/create.handler
events:
- http:
path: createArticle
method: post
- s3: ${env:BUCKET}
- schedule: rate(10 minutes)

So here, the Lambda function is named createarticle and the function handler is
the article subdirectory. The file is named create and is a function handier, so why
not name it handler?

Once that is done, let's remove the dummy code from the function handler and
replace it with something else. The first thing that should be done is to parse the
event object. Since it is an HTTP event, it should have a body property. I saved
the body property in a constant named data:

'use strict'

module.exports.handler = {event, context, callback) => {
const data = JSON.parse(event.body);
if (typeof data.text !== 'string') {
console.error('Validation Failed');
callback(new Error('Body did not contain a text property.'));
return;

}

}

Now let's assume that it has a certain structure and that the data object has a text
property of the string type. We also need to check that the code conforms to the
following screenshot:

module.exports.handler = {event, context, callback} => {

const data = JSON.parse(event.body);
if (data.text && typeof data.text !== 'string') {

console.error('Validation Failed');
callback(new Error('Body did not contain a text property.'));
return;

|};

If the validation fails, then the error must be logged on the console so that the
callback message can be sent.

Next, for debugging purposes, log out of the text property on the console and
prepare a response message for the callback that has a status code of 2ee, which
will send back a message stating created article, as shown in the following
screenshot. Once done, invoke the callback with a response:

module.exports.handler = {event, context, callback} => {
const data = JSON.parse(event.body);
if (data.text && typeof data.text !== 'string') {
console.error('Validation Failed');
callback(new Error('Body did not contain a text property.'));
return;

console.log(data.text);
const respose = {
statusCode: 200,
body: JSON.stringify({
message: 'Created article.'

o,

callback(null, response);

}

Let's deploy our service and try it out:

GET - http
PUT - https:/,
DELETE - https:

o ol T Vo T 5

(%]
I=
r+
=
"M
=t
<]

The service has been deployed. Now we will head back to Postman to test the
API.

We will again send a post request, but this time we will click with a Body (found
in the tab). It should be JSON-encoded and contain the text heiio worid, as shown
in the following screenshot:

0 g
Bl EL e By

it Wy »

el N Teh Lo NoEnome To Q

— POIT = Pipelettnt et aciaucentieblamanor b comdretedr e Y e e

e ¥ a9 bngy

e "Helln bl
rneufehoatdb eneplenc
Lol
i
TEHE
B foeiGenogd
T amnai ol
m i il I g e S ARE

Now click on Send, et voila-it says Created article:

Pretty KON v o WQ

10]

:
. "message"s "Created article.”
3

J

Let's now go back to Terminal and check the logs. To check the logs, type in sis
logs and our function name, createarticle:

[:\Users\adnin\Desktop\progranming-aus- 1anbda-master\ javascript\blog-appesls logs -f createdrticlel

linble to import module “articles/create': Error
at Function.Module. resolverilenane (module.js:325:15)
at Function.bodule, load (module,s:276:25)
at Module.require (module,js:353:17)
at require (internal/module,]s:12:17)
at Object. canonymousy (/var/task/articles/model, js:3:14)
at Module, conpile (module,js:469:26)
at Object Module. extensions..js (module.js:416:18)
at Hodule, load (module.js:343:32)
at Function.odule. load (module.s:300:12)
at Hodule, require (module,js:353:17)

Uinable to import module 'articles/create’: Error
at Function.todule. load (module,s:276:25)
at Module. require (module.js:353:17)
at require (internal/module.]s:12:17)
at Object. canonymous> (/var/task/articles/model. js:3:14)
at Module. conpile (modulejs:489:26)
at Object.Module. extensions..js (module.js:416:18)
at Hodule, load (module.js:343:32)
at Function.Hodule. load (module. js:309:12)
at Hodule, require (module,js:353:17)

Unable to import module "articles/create': Error
at Function.lodule. resolverilenane (module.js:325:15)
at Function.Module. load (module.s:276:25)
at Module, raquire (module,js:353:17)
at require (internal/module.s:12:17)
at Object. canonymousy (/var/task/articles/model, js:3:14)
at Module. conpile (module,js:469:26)
at Object Module. extensions..js (module.js:416:16)
at Hodule,load (module.js:343:32)
at Function.todule. load (module.]s:300:12)
at Hodule.require (module,js:353:17)

Hello World

We can see in the logs that it says helio worid, as shown in the following
screenshot:

Hello Horld

Creating more functions

Alright. Let's create some more functions.

First, I will create or specify the functions that I want to have. I'm going to create
an API for reading articles, for updating articles, and for deleting articles, as
shown in the following screenshot:

readArticle:
handler: articles/read.handler
events:
- http:
path: articles
method: get
updateArticle:
handler: articles/update.handler
events:
- http:
path: articles
method: put
deleteArticle:
handler: articles/delete.handler
events:
- http:
path: articles
method: delete

You also need to create the files. Create three separate files under the articles
files serverless.js, read.js, and update.js.

Now, let's go back to the create. js file, copy the code, and paste it into the read. js
file. Once this is done, delete the following from the read. js file:
const data = JSON.parse(event.body);
if (data.text && typeof data.text !== 'string') {
console.error('Validation Failed');

callback(new Error('Body did not contain a text property.'));
return;

For now, let's simply create a stub because you can't save data yet, and it doesn't
really make sense to do anything else. Rename the message function with
respect to the filename.

In the read. ;s file, enter the following:

| 'use strict'

module.exports.handler = (event, context, callback) => {
const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Read article.'

ik

callback(null, response);

}

In the update. js file, enter the following:

'use strict'
module.exports.handler = (event, context, callback) => {
const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Update article.'

o,

callback(null, response);

}

In the delete. js file, enter the following:

'use strict'
module.exports.handler = (event, context, callback) => {
const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Delete article.'

o,

callback(null, response);

}

We also need to save the serveriess.ymi file.
Alright. Let's deploy our service.

Once deployed, you will get four functions:

createArticle: blog-dev-createArticle
readArticle: blog- readArticle

updateArticle: blog-dev-updateArticle
deleteArticle: blog-dev-deleteArticle

You will also get four endpoints:

POST - http

GET - https:/f 8. execute-api.eu-central-1.amaz (

PUT - https ug ute-api.eu-central-1.amazonaws.co cles

DELETE - https://9 .execute-api.eu-central-1.amazonaws.com/dev/deletearticle
Make sure that you remove the createarticle path and also name its articles; otherwise, the
Management Console will show that our API has a little inconsistency.

Now let's check the AWS Management Console:

:11 Amazon AP Galeway ~ APls > dewsimple (oubh®5d) > Resources > |/ (wiilhThagf) . e
s , Resoures Actions» g/ Methods
dev-simple -5
| Resoures » -‘aﬁif =
Siages
Authorzers .

U

v [deletedricle

Gateway Responses
Models
Resource Policy
Dacumentation
Dashboard
Sefings
FirsAPI
Petslore
Usage Plans
API Keys
Custom Domain Names
Client Certificates
VPG Links

Seftings

As shown in the screenshot, we have a oeLete, ceT, post, and putr method. If you
click on the method, it also shows the API integration with our Lambda function.

In the next section, we are going to add DynamoDB to our backend and make it
a stateful, serverless application.

Creating a stateful serverless backend
with DynamoDB

By now, you will know how to create a stateless web application. Now we are
going to add a database to our backend. For this purpose, we will create a
DynamoDB database table and then use the DynamoDB node.js client to create,
read, update, and delete items. We will then add this functionality to our little
blog application.

So let's get started.

Sign in to the AWS Management Console (the location I have chosen in our
example is Frankfurt) and open the DynamoDB dashboard. Since we don't have
a DynamoDB table yet, As a service offering DynamoDB is the database. Hence,
we don't need to manage the database server on our own. You can use the web
dashboard to create tables by clicking on the Create Table button and going
through the wizard. However, before that, we will need to use the serverless
framework to programmatically create the DynamoDB table for us, so click on
Cancel for now.

Go to the editor and open the serveriess.ym1 file. You will notice that there will be
a section where you can specify the resources that will be provisioned by using
cloudrormation. Replace the dummy code that was placed with the code that you
prepare as follows:

resources:
Resources:
BlogTable:
Type: AWS::DynamoDB::Table
Properties:
TableName: BlogTable
AttributeDefinitions:
- AttributeName: article_id
AttributeType: S
KeySchema:
- AttributeName: article_id

KeyType: HASH

ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

As shown in the preceding screenshot, I am creating a s1ograble resource for us.
The B1ogTable resource is of the pynamops Table type, and the pynamope Table type
needs a couple of properties. For instance, it needs a Tabiename, which in this case
is Blograble. We have also specified the attributes—which of the attributes is the
hash key and which one is the range key (range key can be optional). In this
case, the hash key is article_id.

The hash key in DynamoDB is something like a primary key or a partition key that you might
know from other databases.

Another attribute that should be specified is provisionedThroughput, which can help
in determining how much throughput is used, and can also determine the cost of
the DynamoDB table.

8 To learn more about the attributes, read the DynamoDB documentation.

Now open Terminal and go into the service directory. Simply type sis deploy to
provision our DynamoDB table:

GET - http dug8.execute-apl.eu-central-1.am
PUT - http /9 38dugg te-api.eu-central-1.am

As you can see from the preceding screenshot, the deployment has been finished,
and we can now switch over to the AWS Management Console to see if the table
has been created.

You will now see that a BlogTable is present, which is active and has a partition
or hash key, which are synonyms for the name article_id.

For the next step, we need to connect our application to the DynamoDB table
that we just created. For this purpose, we need to install a dependency, the AWS
SDK.

Create a package.json file via npm init -y.

npm init -y
C:\Users\admin\Desktop! - criptiblog-apprnpm init
lirote to sers\a g g \javascript\blog-app\package.json:

description™: "",
"main”: “handler.js",
scripts™: {
"test": "echo \"Error: no test specified\" && exit 1"

LtEabL

Then install the dependency, via npm, with i for install and -save so it gets saved
in the package.json fﬂe, aws - sdk.

Once the dependency has been installed, we will be able to see the node_modu1es
directory with the aws-sdk and its dependencies . We will also see that the
dependency has been added to our dependencies in the package.json file.

We will now go to the create. js file and connect our application to the
DynamoDB table:

'use strict';
module.exports.handler = (event, context, callback) => {
const data = JSON.parse(event.body);
if (data.text && typeof data.text !== 'string'){
console.error('Validation Failed');
callback(new Error('Body did not contain a text property.'));
return;

console.log(data.text);
const response = {
statusCode: 200,

body: JSON.stringify({
message: 'Created article.'

1)

callback(null, response);

}

You will notice that the create function handler just sends back some dummy
data, a hard-coded response with an HTTP status code 200, and the JSON in the
body. You might wonder about the structure of the response. There are different
ways to integrate API Gateway with Lambda. This style is called Lambda proxy

and it's the default that the serverless framework currently uses. Using this
integration style, you can specify the HTTP and the HTTP request,
programmatically. You could, for example, also add HTTP headers or other
things programmatically. This is much more convenient than doing it on the
AWS console, which you would need to do if you want to use the plain Lambda
style instead of the Lambda proxy integration style.

The first thing that we need to do is add our dependencies to the create. ;s file. We
need to add the aws-sdk, the module that I just installed. We then use AWS to
create a new DynamoDB client. Since DynamoDB uses different clients, we will
use the document client, which is a higher-level client that is easier to use, more
convenient, and more developer friendly:

'use strict';

const AWS = require('aws-sdk');
const dynamo = new AWS.DynamoDB.DocumentClient();

module.exports.handler = (event, context, callback) => {
const data = JSON.parse(event.body);
if (data.text && typeof data.text !== 'string'){
console.error('Validation Failed');
callback(new Error('Body did not contain a text property.'));
return;
}

We then replace the console.10g statement with a dynamo request, and issue a put
request to create a new item:
dynamo.put(params, putCall)
const response = {
statusCode: 200,

body: JSON.stringify({
message: 'Created article.'

1),
}

The put method needs two arguments; the first of which is params and the second
of which is caiiback. You also need to implement the parans and the caliback. You
can look up the DynamoDB Node.js SDK documentation on how to do that.

First we need a JSON file that specifies the table name and specifies the item.
For now, we will use a hard-coded ID, our article_id, and give the second
attribute the text that is retrieved from our event. The second thing to do is
specify putcaliback. To do this, create a new variable, caliback, and assign the
method, which is an error-first callback function, as follows:

const params = {
TableName: 'BlogTable',
Item: {
article_id "1",
text: data.text
3
+i

const putCallback = (error, result) => {

if (error) {
console.error(error);
callback(new Error('Could not save record.'));
return;

If there is an error, scroll down and copy the following:

const response = {
statusCode: 200,
body: JSON.stringify({
message: 'Created article.'

o,

callback(null, response);

Once you have copied the preceding code, prepare the response that should be
sent back to the item that was created in DynamoDB. So, instead of sending
back the object, we are going to send back the resuit.1tem:

const putCallback = (error, result) => {

if (error) {
console.error(error);
callback(new Error('Could not save record.'));
return;

3

const response = {
statusCode: 200,
body: JSON.stringify(result.Item),

callback(null, response);

by
dynamo.put(params, putCallback);

If you want to learn more about the structure of the result, you can log it out on the console
and view it by entering the following:

console.log(result);

Now let's locally invoke our createarticie function with the event.json file, as
shown in the following:

C:\Users\admin\Desktop\programming-aws-lanbda-master\javascript\blog-appysls invoke local -f createdrticle -p articles/event.json

“statusCode": 260

C:\Users\admin\Desktop\progranming-aus-lambda-master\javascript\blog-app»

This returns the service code 200, and if we switch over to the AWS Management
Console, we can see that the Hello World item has been created, as shown in the
following screenshot:

Dynemol P e BlogTale Chs 181 ¢
istboat —
Ovevew hons Metics Mlams Capacky deves GobelTales Bckups Trigges e
Tals OFfertyerane X
Bathns e ‘ Acions 0 G
Resened el
0 Dl Sca:Tble| BlgTabe: e 1 A Viewing 101 ems

REEE

T e
0 i

|

Sl seaeh

ack il e

Hlo Word

However, if you want to create more articles, you would need to increase or
change the articie_id number. So what we need to do is add the following
module:

| npm i--save uuid

This will install the uwuid module, which can be imported as shown in the
following screenshot:
const AWS = require('aws-sdk');

const dynamo = new AWS.DynamoDB.DocumentClient();
const uuid = require('uuid');

Once done, you can replace your hard coded articie_id:

const params = {
TableName: 'BlogTable',
Item: {
article_id: uuid.v1(),
text: data.text

1
}

8 The way the ID is used is by specifying the version number of the kind of wuid that you want to
create.

Now switch back over to the management console and refresh the table. You will
notice that an item has been created with a randomized uuid, as shown in the
following screenshot:

DynamoDB BlogTable Close
i ¢ TN | Deleto table g T80
Diashboard —
: Overview | lems Metrics Alams Capacity Indexes GlobalTables = Backups Triggers Mo v
Tables Q Filter by table name X
Bathups Name \ Actions # G
Reserved capacily

Bloglable Scan: [Table] BlogTable: article id A Viewing 1 to 2 tems
Preferences (g § ™ o oy) !

e BT 3k i

0 Ad e

Starl search

article id fext
5a2d3B0ek T HeloWord

1 Hello World

Alright, it seems to work. But does it actually work if we deploy our service?
Spoiler alert: it won't.

Nevertheless, we will deploy the service as it is currently and see what went
wrong and what can be done to fix it if you run into the same error later.

Switch over to the editor and deploy the service via sis deploy:

| s1s deploy

Once the service has been deployed, invoke the command remotely. You will run
into an error. Try getting more info on what went wrong. Check the logs as well.
Scroll up the logs and you will notice the following:

rized 10 perlo

We can see that our Lambda function is actually not authorized to perform the
PutItem FeqUeSt ON OUT BlogTable resource. So let's fix this. Go to our serverless.yml
file. You will notice that you can add IAM statements or [AM roles to your
service.

By the way, this is supposed to change in serverless framework version 1.8. So if you're using
0 a newer version of the serverless framework, please head over to the serverless website and
check out the documentation.

If you are using serverless framework 1.7 or earlier, you can add the following
IAM role statements, where you specify which kind of actions you want to
perform:

provider:

name: aws

runtime: nodejs4.3

stage: dev

region: eu-centra-1

iamRoleStatements:

- Effect: Allow

Action:

- dynamodb: Query
- dynamodb: GetItem
- dynamodb: PutItem
- dynamodb: UpdateItem
- dynamodb: DeleteItem

| Resources: "PUT_YOUR_ARN_HERE"

From the preceding screenshot, you will notice that our resource ARN is
missing. How do you find this?

Switch over to the AWS Management Console. On your DynamoDB table,
there's a tab named Overview. Scroll down and you will be able to see the
Amazon resource name. Copy the name and replace it with the missing ARN
name in the serveriess.ym file.

Once the service has been redeployed, invoke it:

~amming-aws-lambda-master\javascript\blog-app»sls deploy

C:\Users\admin\Desktop\programming-aws-1lambda-master\javascript\blog-app»sls invoke -f createfrticle -p articles/event.json

"statusCode”: 260

As you can see in the preceding code, we get back a status code of 2e0. When we
check the table, we will be able to see that a third item has been added, as shown

in the following screenshot:

Cloge

L (Rl Dektetale e LI
Oashbcar —
, Overview Moms Metrcs Alams Capacty ~oees GlobalTables Backups Trggers Vo v
| Taes () Fitr by ke name X
Cha o . R s v LAY
Resered capaty

0 Cloglatie Scan: Table] BlogTebe: aric id Viewing o ems

Preferences B

T B e
0 i

et search

aie i fedt
FeEYHT-1 - Helo Wond
DACZEDa04KD- Helo Word

1 Hell World

Before we move on to implementing the read, update, and delete functions, we
need to refactor our code a little bit, because right now, the persistence business
logic and Lambda function code is all tangled together and should be separated.
If you want to use test-driven development, write unit tests, or something
similar, separating the business logic from your Lambda function can come in
quite handy.

So, let's create a model.js file:

'use strict';
const uuid = require('uuid');
class Article {

constructor{id, text) {
this.article_id = id;
this.text = text;
3
}
const createArticle = (event, callback) => {
validateAttributes(event, callback);
const body = JSON.parse(event.body);
const id = uuid.v1();
const text = body.text;
return new Article(id, text):
}
const readArticle = (event, callback) => {
validateId(event, callback);
const body = JSON.parse(event.body);
const id = body.article_id;
return new Article(id);
}
const updateArticle = (event, callback) => {
validateId(event, callback);
validateAttributes(event, callback);
const body = JSON.parse(event.body);
const id = body.article_id;
const text = body.text;
return new Article(id, text);

As you can see, | have created an articie class that captures the properties of the
article. Then there are some helper methods, such as createarticie, that transform
the Lambda function event and callback, and use these in a validation step,
which will then create an article object and return that article object using the
event information. We also have some more helper functions for validating our
event and throwing an error if the validation fails. Then we export our article
class and the create, read, update, and delete methods.

One more layer of abstraction that I want to add is a data access object for
DynamoDB.

I've already prepared something for that. I'm going to create a new subdirectory,
util, and in that subdirectory, I will create a file named dynamo-dao.js. Again, we just
copy and paste the source code. Don't worry, it's all in the repository; you can
look it up there.

Basically, what we are going to do is wrap the DynamoDB document client in a
class and provide some higher-level methods that take the model as an input, so
my article and a callback, and so we pass in our callback into the Dynamo
method, such as a put method, and if the put method works out correctly, we call
our callback here.

We would pass in the callback from our Lambda function to create a new item.
One more thing that should be created is a controller. You can judge for yourself
whether you need so many levels of abstraction, or if fewer levels would do.

Let's create a new file, controller.js, and add our controller code here. What this
does is it wraps around the DynamoDB data access object and wraps or performs
the error handling so that we have it in the main code. We import the createarticle
method from my mode1. ;s file and import DynamoDAO and the controller. The
way we use them is to use the createarticle method here to create a model from
our event. By using my callback, if there's an error, I can send the error to my
callback function. Here, I am creating a DynamoDAO and passing in the
Dynamo client from up here, as well as the name of my table, which is siogranpie.
Then I'm creating a controller, my articlecontroller, passing in my DynamoDAO.
Last but not least, I invoke the createarticie method on my controller, giving it
my model and my callback from up here. The delete method looks very similar
—deletearticle. Update just changes to updatearticle. Now, let's deploy our
service.

Once deployed, invoke the service. Invoking the service will create a new article
that can be seen when you switch to the AWS Management Console, and you
will see an article with the name Hello Universe.

Let's now try to invoke the readarticie method. For that, you need to specify the
article_id. Switch to the AWS Management Console, copy one of the article IDs,
and paste it into the event.json file. Invoke the readarticie function and you will
get back Hello World. Let's try updating. Instead of weiio wor1d, let's replace it
with Hello universe, and instead of readarticie, let's use updatearticie. When you
read it again, you will notice that it says Hello Universe. And last but not least,
you can try the same in the delete article. Go back to the table and refresh. The
article will be gone.

Creating a web client

In the previous section, we created a Cognito pool and added some functionality
to our backend to retrieve the Cognito identity from our context object. Here, we
will create a web frontend for our application, a web client. We will first
generate a JavaScript SDK of our service using API Gateway, and then we will
use this SDK with a Cognito client in a simple web page. Open the Amazon
Cognito dashboard from the AWS Management Console. To use the Cognito
site, go to Services and type in cognito.

Cognito is a web service that allows you to manage or implement sign-up and
sign-in functionality for your application. There are two options that are
provided on the Cognito site: Manage your User Pools and Manage Federated
Identities. You can create your own Cognito pool or you can use federated
identities if you want to allow your users to authenticate, for example, using a
Facebook or Google account. It also allows unauthenticated identities.
Authorization and highly customized pools can be a bit out of the scope of this
section. Instead, we will focus on how to use Cognito IDs to identify users
within their Lambda functions.

So now, we will select the federated identities option in Cognito to create a
Cognito pool. Click on the Manage Federated Identities button and give the
Identity pool a name (in this example, I have used the name siogroo1). Setting up
authentication providers can take a long time, so we will use unauthenticated
identities by clicking on Enable access to unauthenticated identities and creating
a new pool:

Sep: Createidentiypool -~ Create new identity pool

o Lot 3810ns o o .

RS b Ientty pocls are used [0 slore end uset denfilies. To declare 2 new identlty poal. enler & unique name
(dentity pool name™ | ElagFoal]

Example: My App Name

v |nauthenticated identiies

Amazon Cognito tan supporl unauthenticaled idenifies by providing & unique identfier and AWS credentials for users who do nol authenticate wih an ideniiy provider. I your

applieetion allows customers o use the applicaon wilhoutlogging n, you ¢an enable access for unulhenticated ideniies Leam mare aboul unauthentialed identties

v Enable access to unauthentcated identies

v Authentication providers o

* Required [Tl Create Pool

You will see from the preceding screenshot that what has been created for us is
an IAM role that is connected to our Cognito pool, so you can specify what
access rights or access permissions the users get that are identified via Cognito.
You can then differentiate between the unauthenticated identities and
authenticated identities, as shown in the preceding screenshot.

Click on Allow and you will see that the Cognito pool has been created and that
Amazon has provided us with some sample data that we can use with source
code on various platforms such as JavaScript, Android, iOS, and other platforms.
In a later section, we will use these code snippets, but for now, let's just add the
user identification functionality to our Lambda functions.

So head back to the editor and update the mode1.js file, because the user that
created and updated the articles must be identified:

const uuid = require('uuid');
class Article{
constructor(id, user_id, text) {
this.article_id = id;
this.text = text;
this.user_id = user-id;

3
b
const createArticle = (event, context, callback) => {
validateAttributes(event, callback);
const body = JSON.parse(event.body);
const id = uuid.v1();
const text = body.text;
const user-id = context.identity.cognitoIdentityId;
return new Article(id, user_id, text);

We will add a new property, user_id, to the constructor. The user ID can be taken
from Cognito. We will access an object that we haven't used so far-the context
object. If our Lambda function has been called for a request that is authenticated
or that uses the Cognito pool for identification, then the context object will have
an identity property named cognitordentityrd. Once this is done, add it to our
constructor. We also do the same with the updatearticie method. The deletearticle
and readarticle methods can stay as they are, but we now need to invoke our
createArticle method differently:

'use strict';

const AWS = require('aws-sdk');

const dynamo = new AWS.DynamoDB.DocumentClient();

const createArticle = require('./model.js').createArticle;

const DynamoDAO = require('../util/dynamo-dao.js');

const ArticleController = require('./controller.js');

module.exports.handler = (event, context, callback) => {
const article = createArticle(event, context, callback);
const dynamoDAO = new DynamoDAO(dynamo, 'BlogTable');
const controller = new ArticleController(dynamoDAO);
controller.createArticle(article, callback);

}

The same applies for our update method:

'use strict';

const AWS = require('aws-sdk');

const dynamo = new AWS.DynamoDB.DocumentClient();

const updateArticle = require('./model.js').updateArticle;

const DynamoDAO = require('../util/dynamo-dao.js');

const ArticleController = require('./controller.js');

module.exports.handler = (event, context, callback) => {
const article = updateArticle(event, context, callback);
const dynamoDAO = new DynamoDAO(dynamo, 'BlogTable');
const controller = new ArticleController(dynamoDAO);
controller.updateArticle(article, callback);

}

Let us now deploy the frontend to CloudFront and then try out the full stack
application.

Deploying a serverless frontend on
CloudFront

We are going to take a look at deploying our serverless application frontend to
Amazon S3. Then we will deploy our frontend to edge locations on CloudFront.
Last but not least, we will benchmark the latency of our frontend.

So let's get started!

Create an S3 bucket named sis-frontend in the S3 dashboard on the AWS
Management Console. To upload data to the bucket, click on the Upload button
and drag your local web directory into the bucket:

Amazon 33) slsfrontendd

Qverview

Q Type:aprefx and press Ente o search. Press ESC o car.

L Upboad [# Creale foter

More v EU (Frankfur) 2

Viewing 1106
[] Name 1= Last modified 1= Sie 1= Storage class 1=

(] & apiGatevayssik

b s

[& ey

[] [faviconico Jun 18, 2018 7:04:04 P GMT+0530 1148 Standar

[] B indechiml Jun 15, 2018 7:04:0 P GMT+0530 15KB Standard

(] [indexs Jun 15, 2018 7.04:06 P GMT+0530 10KB Standard

Vieing 1106

As you can see from the previous screenshot, once the files are uploaded, we
need to specify that our bucket is used for static website hosting, so we enable
website hosting, set it as an index HTML document, and click on Save:

Knezen® 3 skforendt

Arepit

Versioning

Ao ok versons o an oo e
A

[l e

Server access loggng

S p acoces o oo . poide
A A S,

T

Sta enste hsirg

Endpoit il Tt 52 et el ot
iAol

O] Usem s oo avetsel Leame

i et B

il ik

X

]

Gl

Nt s e

|] Pl s e e
!

-

[Ml sl sy

i

Objetdevelogging

fecord kel A7 vy o e
U s s ot

108
[ige

We also need to get some permissions so that our website will be accessible from
the internet and other users will be able to access it. We specify that s3:cetobject
actions are allowed on our bucket where we host our frontend. Click on Save:

Amazon 53 > slsfrontend

Properties Permissions

Access Control List Bucket Policy CORS configurafion

Bucket policy editor Arw: amans:s3: ss Tontendd
ae

Type to add & new policy or edit an exisfing policy in the text area below Cancel

{
"Version": "2018-06-15",
"Statement”: [
{

"8id": "PublicRezdForGetBucketlbjects”,
“Effect": "Allow",
"Principal”; "*",
"Action": "s3:GetObject”,
"Resource": "http://sls-frontendl.s3-website. eu-central-1.amazonaus. con’

Documentation Policy generator

Click on the link provided in the endpoint to check if it's working. If it's
working, then you should see the following:

Hello World

As seen in the preceding screenshot, the website will say Hello World.

Take a look at the developer console and you will notice the response from the
create object request that we make.

Take a look at the speed test of our website:

Website Speed Test - Page Load Results

@ screenshot
MN, USA
http://sls-frontend.s3-website.eu-central-1.amazonaws.com/

First Visit Repeat Visit

& DOWNLOAD
2.6
MB

SERVER RESPONSEE

[20 ; [_error |
130 2 0 0

@ LOAD TIME

11.6

seconds

SuCcess client server connection
View the detailed summary,
waterfall, error details, hosts, View Waterfall 1
and fastest/slowest elements
dotcom itor’
0LlcomM-MOoNILor

#°8 CHECKS COMPLETE
+ 24 0f 24 Locations

ERRORS FROM
7 Locations

AVG: 1= VISIT
14.4 seconds

X

AVG: 20 VISIT

3.6 seconds

AGENT / LOCATION % FIRSTVISIT % REPEATVISIT B
MM, USA A L 116 seconds lul 490.0 milliseconds
Y, USA lul 26.4 seconds Ll 6.3 seconds

London, UK A i 2.4 seconds I 379.0 milliseconds
CA, USA Al 15.0 seconds I 765.0 milliseconds
FL USA Lt 10.9 seconds L 286.0 milliseconds

Heng Kang, China Il 6.8 seconds

Montreal, Canada lat 10.4 seconds

Frankfurt, Germany Al 1.3 seconds

CQ, UsA I 11.6 seconds
Brisbane, AU Ll 31.4 seconds
TX USA I 13.8 seconds

Amsterdam, Metherlands Ll 2.0 seconds

Tel-Aviv, Israel It 27.0 seconds

VA, USA Al 9.2 seconds

Amazon-US-East A w108 seconds

Shanghai, China

Ruannc Airac Aroontina

MONITOR WEBSITE PERFORMANCE FOR A MONTH
Test as frequently as once per minute for 30 days

Temporarily Unavailable

Tammnararils | Inzwusilabla

Il 424.0 milliseconds
Il 410.0 milliseconds
I 314.0 milliseconds
L 427.0 milliseconds
Ll 444.0 milliseconds
W 774.0 milliseconds
I 443.0 milliseconds
I 918.0 milliseconds
Il 282.0 milliseconds
A i 10.3 seconds

Temporarily Unavailable

Tammnararih | Inswuailahla

Automate this Test

You will notice that, not surprisingly, the performance in Europe is quite good

compared to other locations.

There are also some errors. These arise because the permissions have not been
updated in the other regions yet, which is a process that can take a little more
time in different regions around the globe. As a result, some of these tests failed

because the web clients couldn't access the S3 bucket yet. You will also notice
that the repeated visit is considerably faster, but it's still not quite what we want
right now. Let's try to improve that:

Amazon CloudFront Getting Started (2)

Either your search returned no results, or you do not have any distributions. Click the button below to create a new CloudFront distribution. A distribution allows you
distribute content using a worldwide network of edge locations that provide low latency and high data transfer speeds (learn more)

Create Distribution

What we are going to do is create a CloudFront distribution that will replicate
the bucket content in different geographic locations around the world. As seen in
the preceding screenshot, click on the Create Distribution button, click Get
Started, and then select the bucket where we have hosted our web client, leaving
the other values at their default values. We need to use all edge locations. If
needed, we can also select a subset of edge locations. It will take a little bit of
time, but after that, we can perform our performance test.

0 One last configuration is to specify the default root object, which is our index HTML file.

Now access the CloudFront distribution at this domain name. We can also use it
for our speed testing experiment. Now look at the performance:

Website Speed Test - Page Load Results

@), screenshot
MN, USA
dreq9207rzemb.cloudfront.net

First Visit Repeat Visit

@ LOAD TIME £ DOWNLOAD
44 2.6
seconds MB

SERVER RESPONSES
o] |
13 0 0

SUCCess client Server

View Waterfall 1

dotcom-monitor”

connection

View the detailed summary,
waterfal, error details, hosts,
and fastest/slowest elements

:'l_ CHECKS COMPLETE ERRORS FROM AVG: 1= VISIT AVG: 204 VISIT
+ 24 of 24 Locations 5 Locations 9.5 seconds 2.1seconds
AGENT / LOCATION % FIRSTVISIT % REPEATVISIT ¢
MN, USA Ll 4.4 seconds Il 461.0 milliseconds
NY, USA Il 4.3 seconds Il 546.0 milliseconds
London, UK Wt 1.2 seconds 3180 milliseconds

CA USA It 6.0 seconds lml 317.0 milliseconds
FL, USA Il 5.0 seconds lul 283.0 milliseconds

Hong Kong, China Al 844.0 milliseconds

Montreal, Canada Wt 3.7 seconds

Frankfurt, Germany It 1.2 seconds

CO, UsA I 3.7 seconds
Brisbane, AU It 9.8 seconds
X, USA il 4.1 seconds

Amsterdam, Netherlands Al 977.0 milliseconds

Al 156.0 milliseconds
il 467.0 milliseconds
il 326.0 milliseconds
k. 435.0 milliseconds
Il 455.0 milliseconds
Il 404.0 milliseconds

A i 154.0 milliseconds

Tel-Aviv, Israel L4 253 seconds

VA, USA Il 3.2 seconds

Amazon-US-East Al 107 seconds

Shanghai, China I 39.8 seconds

Al 100 carnn, e

Ruannc Alrac Aroantina

MONITOR WEBSITE PERFORMANCE FOR A MONTH
Test as frequently as once per minute for 30 days

Il 645.0 milliseconds
Wk 277.0 milliseconds
Al 10.3 seconds

lml 398.0 milliseconds

A lw 112 carnn, e

Automate this Test

This time, our repeated speed test using the CloudFront distribution endpoint
shows that performance has significantly improved in at least some regions. In
particular, if we look at the United States, the latency is much better than it was

before.

There are still some errors, indicating that our permission updates have not
propagated to all regions yet, and there are some regions where we have really
long latency, so we would need further investigations to find out why that is the
case, or maybe give the CloudFront distribution a little bit more time to replicate

around the world.

Summary

In this chapter, we built our first serverless application. We used Lambda
functions for implementing business logic, DynamoDB for data persistence,
Cognito for user identification, and CloudFront for serving the frontend. In the
next chapter, you will learn how to program Lambda using other programming
languages, in particular Java, Python, and C#.

Programming AWS Lambda with
Java

Welcome to chapter 4, Programming AWS Lambda with Java. In this section, we
are going to take a look at using Eclipse and the AWS Eclipse plugin. Then we
will program our first Lambda functions with Java. And, last but not least, we
will build a simple serverless application using Java. Now let's move on to the
first video where we get started with Eclipse and the AWS Eclipse plugin.

In this chapter, we are going to take a look at the following:

e Using Eclipse and the AWS Eclipse plugin
¢ Programming Lambda functions with Java
e A simple application with Java Lambda functions

So let's dive in!
Getting started with Eclipse and the AWS Eclipse plugin

From this section, you will learn how to install the AWS Eclipse plugin, and also
try out some of its features. You will also use the plugin to create our first Java
Lambda function.

To find more information about the AWS Toolkit for Eclipse, go to the site of the
AWS documentation, which is the open source plugin for the Eclipse IDE. Once
you open the site, go over to the left and click on Getting Started and Set up the
Toolkit.

There, you will find more information, including that you need an AWS account,
you need to install Java, and so on. But if you have already installed Java and if
you're already using Eclipse, then all you need to do is copy the link nttps://aws.a

mazon.com/eclipse.

Open your Eclipse IDE. If you have never installed an Eclipse plugin before,
there should be a menu action in the menu bar that says Install New Software.

https://aws.amazon.com/eclipse

For macOS, it's under Help, but, depending on the operating system, it could be
somewhere else. So, find the Install New Software menu item and then enter the
URL that was copied previously, as shown here:

Available Software

Check the items that you wish to install. J)i.
A]

Work with: | https://aws.amazon.com/eclipse| e Add... Manage...

| type filter text a |

Name Version

110 AWS Core Management Tools
11 AWS Deployment Tools
It AWS Developer Tools
Il Optional - AWS Android Development (requires Eclipse Android Develc
il Qptional - AWS Data Management Tools

- v v v v

Select All Deselect All

Details

Show only the latest versions of available software Hide items that are already installed
Group items by category What is already installed?
“| Show only software applicable to target environment

Contact all update sites during install to find required software

® < Back Next > Cancel Finish

From the previous screenshot, you will find that the AWS Toolkit for Eclipse
consists of a bunch of plugins for different AWS services. What we need in this

case is the Core plugin, so select the AWS Toolkit for Eclipse Core under the
AWS Core Management Tools. We also need to use the AWS deployment tool
for Lambda, so select AWS Lambda Plugin under the AWS Deployment Tools.

For now, the other plugins are not really needed. Once selected, click on Next.
This will calculate the dependencies, which should be fine to install. Currently,
we am using the Eclipse for Java EE Neon 2 version of Eclipse, but it should
work similarly on all major new versions of Eclipse. So, click on Next, accept
the license agreement, and click on Finish. After the software has been installed,
we just need to restart Eclipse. Once the Eclipse IDE has restarted, you should
see a little orange box, as shown here:

@~ niv: %O
| AWS Toolkit For Eclipse ?

This box will give you more information on how to use the AWS Toolkit for
Eclipse if you click on it.

Click on the little drop-down arrow and create a new AWS Lambda Java project:

e New AWS Lambda Maven Project
Create a new AWS Lambda Java project aWS
Create a new AWS Lambda Java project in the workspace

Project name: | demo

Maven configuration

Group ID: com.amazonaws.lambda
Artifact ID: demo
Version: 1.0.0

Package name: | com.amazonaws.lambda.demo

Lambda Function Handler
Each Lambda function must specify a handler class which the service will use as the entry point to begin

execution. Learn more about Lambda Java function handler.
Class Name: LambdaFunctionHandler
Input Type: S3 Event bt

An Amazon 53 trigger that retrieves metadata for the object that has been updated.

Preview:
package com.amazonaws.lambda.demo;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import com.amazonaws.services.s3.AmazonS3;

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.S30bject;

public class LambdaFunctionHandler implements RequestHandler<S3Event, String> {
private AmazonS3 s3 = AmazonS3ClientBuilder.standard().build();
public LambdaFunctionHandler() {}
// Test purpose only.

LambdaFunctionHandler(AmazonS3 s3) {
this.s3 = s3;
¥

@ Cancel Finish

For now, set the Project Name as demo. You can also see that we have a group ID
and artifact ID, which is used for Maven. And then, at the bottom, you can see
that the wizard helps us to generate some boilerplate code.

Let's change the default configuration a little bit. You can choose a different
handler type if you want to operate on a stream, but for now let's leave it with a
request handler. We could choose a different input type. For a first simple
example application, let's use the custom input type. You can see that the code
shown in the preview that is generated from our configurations changes. As
input type, we could use a plain old Java object, but we could also use something
such as a string or an integer. So, let's use Input Type and Output Type as String,
so we can build a really simple hello-world application. Let's click on Finish.

When we have created our AWS Lambda Java project, there will be more
information on how to get started. But, in our example IDE configuration, there
are a couple of problems that are pointed out, as follows:

[2 Markers 52 Properties 47L Servers [Data Source Explarer [Snippets e]
13 errors, 1 warning, 4 others

Description ~ Resource Path Location Type

¥ & Java Build Path Problems (1 item)

=1, Build p*th specifies execution environment J25E-1.5. There are no JREs installed in the work.. demo Build path JRE System
» {3 Java Problems (13 items)
» Java Task (4 items)

These errors might not even happen in your case, but, in case they appear, let's
see on how to fix them.

In the preceding screenshot, the problem is that the build path was not
configured correctly. The reason is because of using the outdated Java version
1.5. We need to change that. So, go to the project explorer tab, click on demo,
and go to demo | Build Path | Configure Build path:

Properties for demo

type filter text €@ | Java Build Path LS
’ Re.source ®Source =Projects =hlibraries % Order and Export

e JARs and class folders on the build path:

Coverage : : ;

S Bl aki » B\ JRE System Library [java-8-openjdk-amdé4] Add JARs...

» =\ Maven Dependencies
Pjava Eode '.sltyle Add External JARs...
v Java Compiler
v Java Editor Add Variable...
..:;wadoc Location Aokl LiRearue

aven

Project References Add Class Folder...

Run/Debug Setting:
'Task/RepoEitory . Add External Class Folder...

Task Tags b
* Validation st

WikiText Remove

Migrate JAR File...

Apply

@ Cancel Apply and Close

As shown in the preceding screenshot, you will see that Java version is 1.5, so
change it by clicking on Add Library. Choose a different JRE system library,
namely Java SE8, and click on Finish. Once done, remove the Java 1.5 and click
on OK.

This has not solved all the problems yet. We also need to make sure that the
project properties are set correctly. So, go back to the Build Path and go to the
Java Compiler:

* Properties For demo

| type Filter text €@ | Java Compiler (E R S
* Resource Enable project specific settings
s JDK Compliance
Coverage _
Java Build Path
* Java Code Style Compiler compliance level: 1.8 v
 Java Compiler Use default compliance settings
» Java Editor _ B
Javadac Locating Generated .class files compatibility: 1.8 v
Etaen Source compatibility: 1.8 -
Project References
Run/Debug Setting: Disallow identifiers called 'assert’: Error v
* Task Repository Disallow identifiers called 'enum’; Error b
Task Tags
» Validation Classfile Generation
WikiText Add variable attributes to generated class files (used by the debugger)
Add line number attributes to generated class Files (used by the debugger)
Add source file name to generated class file (used by the debugger)
Preserve unused (never read) local variables
Inline Finally blocks (larger class Files, but improved performance)
[Store information about method parameters (usable via reflection)
Restore Defaults Apply
@ Cancel Apply and Close

In the preceding screenshot, you'll notice that the compliance level is set to Java
1.8, but we need to use Java 1.8. Click on OK and rebuild. This will remove all
the errors.

OK, let's take a qUiCk look at the LambdaFunctionHandler:

[l LambdaFunctionHandlerjava 2 [demo/pom.xml # LambdaFunctionHandlerTest.java
1 package com.amazonaws.lambda.demo;
,

§-+- import com.amazonaws.services.lambda.runtime.Context;[]
5
6 public class LambdaFunctionHandler implements RequestHandler<String, String> {

E
~ 85 @0verride
=9 public String handleRequest(String input, Context context) {
10 context.getLogger().log("Input: " + input);
N
12 // TODO: implement your handler
13 return input;
14 }
15 3}

So, as shown here, what has been auto-generated for us is a class, which is a
Java class with the name LambdarunctionHandier that implements the request handler
interface, using a string as both input and output. A context object can also be
accessed. Right now, our Lambda function handler is pretty simple. There is the
handlerequest function, which takes two parameters, a string-type input, and the
context object, which just logs out the input. There is also a TODO, which
implements your handler. Right now, it just returns null. If we return an integer,
it won't compile because the handler function is supposed to return a string. Now
we are going to deploy and test the Lambda function that we have just created.

Deploying and Testing AWS Lambda
Functions

Now you know how to create a Lambda function using Eclipse, we are going to
deploy and test our function.

First, we will set up our Eclipse IDE with AWS credentials so that we can access
AWS from within Eclipse. Then we will deploy and run our Lambda function
from within Eclipse. And, last but not least, we will take a look at the Lambda
function on our AWS Management Console.

Go back to the Eclipse IDE. The first thing that we need to check before we can
upload and run our Lambda function is if Eclipse has access credentials to access
AWS. So, open the Preferences and you can see on the left-hand side there is an
item for AWS Toolkit, as shown in the following screenshot:

| typefiltertext €@

* General

* CloudFormation Tem)
DynamoDB Local Tes!
External Tools
Key Pairs
Regions
Toolkit Analytics

+ Cloud Foundry

+ Code Recommenders

* Data Management
Gradle

* Help

¥ Install/Update

r Java

+ JavaEE

* Java Persistence

» Javascript

» JSON

F Maven

» Mylyn

* Oomph

* Plug-in Development

* Remote Systems

* Run/Debug

Preferences

AWS Toolkit

Eow v

AWS Toolkit Preferences

Global Configuration o

Default Profile: | default hd Remove profile

Add profile

This credential profile will be used by default to access all AWS regions that are not configured with
a region-specific account.
Profile Details:

Sign up For a new AWS account or manage your existing AWS security credentials.

Profile Name: | default

Access Key ID: | AKIAJILYGLT65EB6RMIA |

Secret Access Key: | |
("] show secret access key

Session Token:
[Use session token
+ Optional configuration:

Credentials file:
The location of the credentials file where all your configured profiles will be persisted.

Credentials file: | /home/test/.aws/credentials | | Browse..

|_| Automatically reload accounts when the credentials file is modified in the File system.

} Server Timeouts:
» Team Connection Timeouk (ms)
¥ Terminal | 20000
alidatic Socket Timeout (ms)
+ Web
» Web Services | 20000
F XML See Network connections for more ways to configure how the AWS Toolkit connects to the Internet.
Get help or provide feedback on th
Or directly contact us via aws
Restore Defaults Apply
@ Cancel Apply and Close

As you can see in the preceding screenshot, the Toolkit is set up with the default
AWS profile, including the access key ID and the secret access key.

&

Now let's deploy our Lambda function. Go to the demo project folder and click on
Amazon Web Services, as shown here:

If you have set up an AWS credentials file on your local file system, Eclipse will take the
information from that file. Otherwise, you need to enter it. Please go back to the install and
setup guide if this has not been set up for your Eclipse IDE.

it Package Explorer 8| = O . [l LambdaFunctionHandler java M demo/pom.xml & LambdaFuncl

=

B

g

@Captor
New or<GetObjectRequest> getObjectReque
Go Into
. . throws IOException {
Open in New Window s.parse("/s3-event.put.json”, S3Eve
Open Type Hierarchy i - ;
e lize your mock logic for s3 client
' B Tes i bbjectMetadata = new ObjectMetadatal
= B Copy EetContentType (CONTENT TYPE);
' D Teg » btObjectMetadata()).thenReturn(objec
B Copy Qualified Name btObject (getObjectRequest.capture())
& Paste

Delete AteContext() {

= new TestContext();

Build Path ilize your context here if needed.
Source polame ("Your Function Name");
Refactor

ta Import...

3 Export...

bdaFunctionHandler() {
<" Refresh hndler handler = new LambdaFunctiont
Close Project eateContext();

Assign Working Sets...

aration | & Console = & Progress

Coverage As d] /usr/lib/jvm/java-8-openjdk-amdé4/bi
Run As ml.jackson.dataformat:jackson-dataf
oda-time:jar:2.8.1 in the shaded ja
De?ug = ws: jmespath-java:jar:1.11.256 in th
Validate ws:aws-lambda-java-events:jar:1.3.0
Restore from Local History... WS :aws-java-sdk-sns:jar:1.11.256 in
Ws:aws-java-sdk-sqs:jar:1.11.256 in
. Déploy Server-less Project...
Run function on AWS Lambd,
Compare With . d Function SL
Configure Debug on AWS SAM Local...

Properties Run on AWS SAM Local...

[INFO] Total time: 02:48 min
[INFO] Finished at: 2018-06-18T82:00:18+05:30
[INFO1 Final Memory: 32M/249M

You can see that there are three different options: deploying the project, running
a function, and Upload function to AWS Lambda.

The first thing that we need to do is upload our function to Lambda:

' = Upload Function to AWS Lambda
Select Target Lambda Function aWS

Choose the region and the target AWS Lambda function you want to .~ 2)
create or update for your local lambda handler.

Select Lambda Handler and Target Region

Select the Handler: com.amazonaws.lambda.demo.LambdaFunctionHandler ~

Select the AWS Region: | EU (Frankfurt) v

Select or Create a Lambda Function:

) Choose an existing Lambda function: Not Found =

© Create a new Lambda function: |f MyJavaFunction

Select the region and name the function mysavarunction.

Click on Next.

@ & Upload Function to AWS Lambda
1 Function Configuration a U U S

Configure this Lambda function and upload to AWS.

| Basic Settings
Name: MyJavaFunction

Description: The description for the Function (optional)

| Function Role
Sei’ecr the IAM role that AWS Lambda can assume to execute the function on your behalf.

ra ahank | amhda avacnkian ralae

IAM Role: | lambda_basic_execution ¥ || Create

Function Versioning and Alias
You can publ’;sh a new immutable version and an alias to that version whenever you have a

naur randicinn AF Fha | ambda Finckinn | aacn mara abkhank L ambda fincFinn vuarcianina anAd

| Publish new version

Provide an alias to this new version

Choose an existing function alias: | Not Found -

Create a new function alias: beta

S3 Bucket for Function Code

S3 Bucket: | lambda-function-bucket-eu-central-1-146179 ¥ | |Create
Upload Lambda zip file with encrytion to protect data at rest by using Amazon 53 master-
L nr bas ticina AlAIC PAAC mackarbag | rea abhank Amazan €2 ancrankinn

© None 7 Amazon S3 master-key () AWS KMS master-key

KMS Key: | aws/lambda ¥ | | Create
Advanced Settings

Memory (MB): 512

Timeout (s): 15

@ < Back Next > Cancel Finish

As shown in the preceding screenshot, there are some more configurations that
can be made, such as the IAM role, where you can use the Lambda basic
execution role or you can create a new role. You can select a bucket where you
want to store the function codes for the Java class files and dependencies, and
also select how much memory you want to give the Lambda function. For now,
let's go over to default settings and click on Finish. This will upload the code to
the S3 bucket to create the new Lambda function.

Once the Lambda function has been uploaded, run it. Go to AWS Web Services
and click on the option Run Function on AWS Lambda. We need to enter some

input and invoke the function. So, let's enter a JSON input and then invoke the
Lambda function. The function that we have created expects a string as input, so
give it a string and click on Invoke. What you will see is that our function output
iS Hello world, as shown here:

Select one of the Lambda Handlers to invoke: com.amazonaws.lambda.demo.LambdaFunctionHandler ~

Select one of the JSON files as input: [demo/src/test/resources/s3-event.put.json v

O Enter the JSON input for your function
"Hello Worldf

Show live log

Cancel | Invoke |

Now let's move on to the AWS Lambda dashboard on the AWS Management
Console:

(ode

Function name v Description Runtime ¥ v Last Modified v
size
Fri Jun 15 2018 17:54:53
blog-dev-deleteArticle Nodejs43 65MB
GMT+0530{15T)
, , Fri Jun 15 2018 17:54:52
blog-dev-updateArticle Nodejs43 6.5MB
GMT+0530{15T)

Please use alexa-skils-kit-nodejs-factskill from the Serverless ~ Nodejs 1795 Thulun07 2018 13:11:57

qreeterHelloWorldSkil ™ .
Application Repository 6.10 kB GMT+0530 {15T)

, 259 Thu Jun 142018 16:10:29
HelloWorld Astarter AWS Lambda function, Python 2.7
bytes ~ GMT+0530ST)

16.1 Mon Jun 18 2018 02:51:07

MylavaFunction Jva8
MB GMT+0530{1ST)
, , Fri Jun 15 2018 17:54:52
blog-dev-createArticle Nodejs43 6.5MB
GMT+0530{1ST)
Fri Jun 152018 17:54:52
blog-dev-readArtcle Nodejs43 65MB
GMT+0530{1ST)

o Pleaseuse alexa-skills-Kit-nodejs-factskillfrom the Serverless Nodeys 1795 ThuJun07 2018 13:05:02
handsFreeMesssengerSkill " :
Application Repository 6.10 kB GMT+0530 {15T)

) : 26 Wed Jun 06 2018 16:40:40
firstlambda Nodejs 4.3
bytes ~ GMT+0530(IT)

, 9 Wed Jun 06 2018 16:09:23
13 Nodejs 43
bytes GMT+0530ST)

As you can see in the preceding screenshot, the MyJavaFunction Lambda
function has been added using Java 8 at runtime. If you click on the function,
you can see some more information, such as configuration details, triggers, and
monitoring data. You can also see the logs by clicking on View logs in
CloudWatch:

Time (UTC+0000) Message

0617
No older events found at he momen. Rety.

b 202008 START Requestd: 59909004-T274-1 1e8-b64tHd2e27562690 Version: SLATEST
b 212008 Input: Hello Word
b 202108 END Requestd: 59909004-7274-1Lef-h341{d2e275626%0
b 21208 REPORT Requestid: 3990900d-7274- L18-u841d2e27562630 Duration: 49.79 ms Biled Durafion: 100 ms Memory Size: 512 MB Max Memory Used: 41 MB
b 2308 START Requestd: bi637eed: 12751 1e6raB6c-0fea09c3265 Version: SLATEST
b 2L3L08 Input: random sting
b 2308 END Requestid: hfbS7eed: 72751 1efra66c-0fea0 7963265
b 23108 REPORT Requesld:brb5reed-727%-11e8-386c-0feal79c3263 Duraton: 229 ms Biled Duration: 100 ms Memory Size: 512 MB Max Memory Used: 41 MB

Nonewer evens found at the moment, Refy.

As you can see in the preceding screenshot, there is a new log stream for the
Lambda function and it also states nput: random string.

Now let's access the context object and return some of the runtime information
of our Lambda function. Go back to the Eclipse IDE and edit the code to access
the context object. For example, we could return the remaining time in
milliseconds. This is an integer, so let's make it into a string, as shown here:

I LambdaFunctionHandlerjava \ b demo/pom.xml g LambdaFunctionHandlerTest java =

| package com.amazonaws. Lanbda. deno;

)
J*import con.anazonaus. ervices. Lanbda. runtine. Context:
)
o public class LanbdaFunctionHandler inplements RequestHandler<String, String> {
]
8 @verride
9 public String handleRequest(String input, Context context) {
10 context.getlogger().log("Input: " + input),;
11
1) // T0DO: inplement your handler)
13 return "Remaining time [ms]: " + context.getRemainingTimeInMillis(I;
U}
15}

Next, we run our function again, and, since our code has changed, it must first
upload the new function code to mysavarunction:

2ol € oot Becan S orsle ¥ Poge TG

(naniil Iambd dem otambd aFune t|onHandler Lambda Console

(
0 Biled Duration: 1060 Menory Size: S12MB Mo Menory Used: 41 1B

Now the function has been invoked, and, as you can see, the remaining time in
milliseconds is 14,976 milliseconds. So, our default configuration of the Lambda
function is 15 seconds.

Let's now to build a slightly more complex Lambda function that takes an S3
event as input.

IL.ambda Function with S3 Event
Input

Previously, we created a synchronous Lambda function that takes the string as
input and returns the string as output. Now, we are going to create an
asynchronous Lambda function that can be invoked through S3 events, and test
the function with a dummy event that can upload a file to S3 and see if the
function is triggered by the create-object event.

Open the project that we have created. Let's add a new Lambda function handler
to the project. Click on the little orange box and select New AWS Lambda
Function. We will create a new function handler name, ssrunctionnandier; use the
default input type that is already selected, S3 Event; and as leave the output type

Create a new AWS Lambda function

Create a new AWS Lambda Function in the workspace

Source folder: | demo/src/main/java Browse..
Package: com.amazonaws.lambda.demo Browse.
Name: S3FunctionHandler|

Lambda Function Handler
Each Lambda function must specify a handler class which the service will use as the entry point to begin execution. about Lambda Java function
handler.

Input Type: S3 Event
An Amazon 53 trigger that retrieves metadata for the object that has been updated.

Preview:
package com.amazonaws.lambda.demo;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import com.amazonaws.services.s3.AmazonS3;

import com.amazonaws.services.s3.AmazonS3ClientBuilder
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.S30bject;

public class S3FunctionHandler implements RequestHandler<S3Event, String> {
private AmazonS3 s3 = AmazonS3ClientBuilder.standard().build();
public S3FunctionHandler() {}
// Test purpose only.
S3FunctionHandler(AmazonS3 s3) {

this.s3 = §3;
t

2

as object:

Click on Finish. This will create some boilerplate code with the Lambda
function handler that takes an S3 event as input:

[LambdaFunctionHandler.java I S3FunctionHandlerjava & i im;
1 package com.amazonaws.lambda.demo;
2

% 3«import com.amazonaws.services.lambda.runtime.Context;!]
8

9 public class S3FunctionHandler implements RequestHandler<S3Event, Object> {

10

11 @override

=12 public Object handleRequest(S3Event input, Context context) {
13 context.getLogger().log("Input: " + input);

14

215 bl : implement your handler

16 return null;

17

18 }

Let's deploy the new function. Right click on demo and go to Amazon Web
Services | Upload function to AWS Lambda.

You will notice that the region is still EU Central in Frankfurt, but, instead, we
create a new Lambda function, mysssavarunction. Click on next. There will be two
Lambda function handlers. Since we don't want to deploy the same Lambda
function as before, let's deploy the new function handler that we've just created.
Select ssrunctionHandler and select an IAM Role:

Upload Function to AWS Lambda

Function Configuration aWS

Configure this Lambda Function and upload to AWS.

Basic Settings
Name: MyS3JavaFunction

Description: The description For the Function (optional)

Function Role

re about Lambda execution roles.

IAM Role: | lambda_basic_execution_java v || Create

Function Versioning and Alias
You can publish a new immutable version and an alias to that version whenever you have a new revision of the Lambda function. L

m Aabnnk | ambAda FincFinn uarcinnina and aliacae

_| Publish new version

Prov

rovide an alias to this new versior
Choose an existing function alias: | Error

Create a new Function alias: beta

S3 Bucket For Function Code

S3 Bucket: lambda-function-bucket-eu-central-1-146179 ¥ || Create

Upload ;‘Lan:i;da zip f.'ie; with enc:}ft;on to protect data at rest by using Amazon 53 master-key or by using AWS KMS master-key. Learn
b None) Amazon 53 master-key () AWS KMS master-key

KMS Key: | Not Found ¥ || Create

Advanced Settings

Memory (MB): 512
Timeout (s): 15
@) < Back Next > Cancel Finish

Click on Finish to upload the code.

Once the code has been uploaded, we switch over to the AWS Management
Console to test our Lambda function with a dummy S3 event. You will notice
that, on the Management Console, we have selected MyS3JavaFunction. We
need to test it, so to do this let's configure a test event. Select the S3 Put event,
which you find by clicking on the Actions tab. This simulates somebody
uploading a new object to an S3 bucket. Click on Save and Test. The Lambda
function returns null and the log output here is the S3 event, as follows:

Lambea) Functions) MyS3lavaFunction ARN - arn awsambdarau-rantra 1019859648260 unction MyS3 lavaFuncton

MySS Ja\laFun[tion Thiotle || Qualflrs ¥ | Actions ¥ ‘ SShutEvet v E

O bt st sucete lgs X

¥ Detalls

Thearea below shovs the esut retumed by your functio execution, Leam more aboutreturming resultsfrom your unction,

il

summary

Code SHA-D56. ~ SH1UTmanytoDHidJgPsiaUbUFSABBy TEmmiNuel= Request D 7919635-727h-1168-275-b3%aBada8819
Duration 04ms Billed duration ~~ 100ms

Resources confgured 512 M8 Makmemory wsed 60 MB

Log output

The area helow showsthe onging callinyourcode. These cormespand o 2 ingla o within the CloueWatch Lag group comespondin totis Lambda unction. Clck here to view the
CloudVatch og qroup.

START ReauestId: d7945635-727-11e8-2750- 033482020879 Vers:on: SLATEST
Ingut: con. anazanaus . services. Lanbda. runtine. events. S3Evant@Tat87FLAEND Recuestld: d7at5635-727b-11e8-a75d-b33a8a0208f
REPORT Requestld: d7915635-727h-11¢8-a70d-b3%acaded8fs Duration: 48.43 ns Billed Duration: 190 ns Henory Size: S12 M8 Max Henory Used: 60 ¥B

When you go back to the Eclipse IDE, you will see that the input event is not
very verbose. We need to give out some more information about our S3 event.
Make the console output a little bit more verbose by replacing the code with the
following:

[LambdaFunctionHandlerjava | S3FunctionHandlerjava =0
1 package com.amazonaws. lambda.demo;

2
3+1nport com. amazonaws. services. Lanbda. runtine. Context:.
8
9 public class S3FunctionHandler implements RequestHandler<S3Event, Object> {
10
e @verride
212 public Object handleRequest(S3Event input, Context context) {
13 for(S3EventNotificationRecord rec : input.getRecords()) m
14 context.getlogger().log("Event Name: " + rec.getEventName() + "\n");
15 context.getlogger().log("Event Source: " + rec.getEventSource() + "\n");
16 530bjectEntity s3object = rec.qgetS3().getObject();
17 | context.getlogger().log("S3 Object Key: " + s3object.getKey() + "\n");
18 }
19
£0 /{ T0DO: implement your handler
21 return null;
no)
23}

We need to iterate over the records, which are of the type
S3EventNotificationRecord. Then we'll output some information, such as the
event name, the event source, and the object that has triggered the event. Now
let's update our code by choosing the same function as before, by clicking Next
and Finish to upload the code. Once the function has been updated, we will head
back to our AWS Management Console.

Go to the AWS Lambda dashboard and click on the Test button again.

MyS; JavaFunct]on Throttle || Qualiiers ¥ || Actions ¥ | S3Putfvent v Test

Log output

The area below shows the logging callinyour code. These correspond o a sngle rowrwithin the CloucWatch og group corresponding to this Lambda
funcion, Clckhere o view the CloueWatch log group.

START RequestId: 41ad6arc-T27e-1166-9062-a382e4ce4S6 Version: SLATEST

Event Name: bjectCraated:Put

Event Source: aws:s3

53 Onject Key: Happyrace. pg

EAD RequestId: 4tadSafc-727e-1126-9062-a302e4cd5eh

REPORT Reguest1d: 41ad6arc-T27e- 1186-9082-3302edcods60 Duralion: 4%4.25 s Billed Duration: 560 ms Hemury Size: 512 B
Max Wemory Used: 58 Y8

As you can see, it uses the same dummy event from before and the log
statements can be seen; for example, the event name, which is the objectcreated
event of type put. The Event Source is S3 and the object key is nappyFace. jpg.

So now we know that the Lambda function can process S3 events. How about
testing it with a real S3 event?

Click on the Triggers tab and add a new trigger to our Lambda function. You can
select from a number of triggers, but we want to choose the S3 trigger. Let's use
the S3 bucket that has been created previously. If you don't have an S3 bucket
yet, create a bucket and then we'll test our Lambda function with events in the
bucket. We can also specify which type of events we want to trigger our Lambda
function. We will go for Object Created events and click on Submit. This will
create a trigger for the Lambda function, as shown here:

MyS3 JavaFunction

Configuration | Menitoring

v Designer

Ma triggers

{likeons tgge fromthe it bl
to o et

AR Gateway

AVSlol

CloudWetch Lvents
ClouWatch L gs

(odeCommi

Cogrilo Sy Trigger

DynamoDB

Kinesis

e

Thrattle H Qualifiers ¥ H Aetions ¥ ‘ ‘SBPuronm

ammmm

5
0 Configuration requied

A tiggers rom the s o the lft

wmmmmm
‘mm
'MwmmmMe
0 HS Lambda

w AWS ey

! Amazon CloudWatch

QMWMMMM

v

Let's go to the S3 dashboard, upload a file into our S3 bucket, and then check if
we can see the metadata of the file that we have uploaded in the log statements
of our Lambda function.

Go to the S3 dashboard and upload a file into the bucket that has the created
trigger. Once the file has been uploaded, take a look at the Lambda log. Go back
to the dashboard of the Lambda function, and click on Monitoring and View logs
in CloudWatch. As you can see in the following logs, we have our dummy event,
the HappyFace. jpg file, but we also have the smiling-cat.jpg that we have just
uploaded:

e e

- o e o e -

Flter events

Time (UTC +00:0)
16061

2084
2003
2003
20%
2140
2144
214l
2144
230

2160618
120
12410
142410
1210
142410
14210

il 060617 (150000)- 010618 50000

Message Show n sream

N ol even ound o he selected dae ange. Adus! he ile fange.

START Reauestd: 095081e-727b-L1ebtc22-43360b63e30 Version SLATEST (2 018061 TSLATESTfedleTeea?.
It com amazonaws.senvices lambda.runime.events. S3Even!@bdBohSa (00 B0GILTIBLATEST2fealeTceal..
END Reduestd: 109508127 Lef-he22-434366063¢30 01608/ TSLATEST]2Med0eTogal..
REPORT Requestd: 1095081e-727o-L1e8be22-43436606330 Duraion: 610,74 ms Biled Duraion: 00 ms Memary - 20L8106/L7SLATEST)fedOeToead...
START Requestd: 7915635 727b-LLefa5¢-033a8a3a9819 Version: SLATEST 201606/ TSLATEST]2MedeTeeal..
INpuL: com amazonas Sendces lambda.runtme evenls S3Event@7alTiid (2018061 TISLATESTfedleTeal..
END Requesti: 7915636-T27h11efa750-13daBadad6fd (01806 L TSLATESTfealeTcea?.
REPORT Redquestd: 78L5635-727t-LLe8a7%-t33a8aSaS3efs Duraton: 4049 ms Bled Duraion: 100 ms Memery S (A 20L606/L7/SLATEST 2fed0eTceal..
START Reques: ladGaf-727e-11e6-9062-a302edc0456h Versin: SLATEST (22016061 TSLATEST 95201996,
Event Name: ObjectCreatedPut (201806 L TISLATESTf950198¢..
Event Soure: aws:s3 (A 01806 1 TIBLATESTif95 0198
3 0bject Key:HappyFace g (01806 1 TSLATESTif95 0145,
END Requesti: LadbalcT27e-L o8 9082-a302edc 4560 (201806 TSLATEST]6201996..

REPORT Requesil: Ladgaf-27e-1168-9062-%02e4c0456h Duraon: 494,25 ms Bl Duraton: 500 ms Memary - (220L6/08/17SLATESTI/952199¢6..

START Request: 43666431-1303-L1ef8035-23e8e378%dk Verson SLATEST (201806 BISLATESThche2h 209
Event Name: ObjectCreated Put (7 01806 A87SLATESTlchele283ds.
Event Source, aws 53 6’2 10618 [SLATESTocbe2n2gdde..
3 0bjct Key: sming-atjpg (2016061 B{SLATES Ticbeb28i..
END Recquestd: 3656431:7303:11e8-8035-¢3eBe37eddlc (2018088 [SLATES Tocbe2b26dge..

REPORT Requesid: 43666431-7303-1e6-8035-c3¢8e3789%lc Durato: 757,83 ms Biled Duraion 800 ms Memory ¢ (#20L8/06/L8{SLATESTlche2b28%..
No newer events found for the selected da range. Acjst the dale range

As you can imagine, you can do a lot of things with the Lambda function using triggers. For
example, we could process the JPEG file, transform it into a thumbnail, store that thumbnail
into another S3 bucket, and then load it onto your Web page to load faster. As you can
imagine, you could do a lot of things with this Lambda function.

Creating a Simple Serverless Java
Project

Now we will create a serverless project that uses Lambda functions in
combination with other AWS services. For this purpose, we are going to use the
AWS Toolkit plugin in Eclipse to create a serverless project from a project
blueprint. We will take a look at the source code and template files that are
created in this project, and then we will deploy and test the application.

Open the Eclipse IDE and click on the little orange AWS icon to create a new
AWS serverless project. Let's give it the project name savaslog and select the
article blueprint. You can have a look at the files that have been created for in the
JavaBlog project, as shown here:

x New AWS Serverless Maven Project

Create a new Serverless Java project aWS
You can create a new Serverless Java project either from a Blueprint or

-
an existing Serverless template file.

Project name: | JavaBlog|

Maven Configuration

Group 1D: ' com.serverless ‘i
Artifact ID: | demo |
Version: 11.0.0

Package name: | com.serverless.demo |

© Select a Blueprint:

This is a Blueprint for creating an article

hello-world APl in API Gatt_eway. 1t will _create two
kaanit Lambd_a functions, P_utArtlcle an_d]
EERERHEen CetArticle, for creating and retrieving an
|article. 1t will also create a S3 bucket for
hosting the article content and a

DynamoDB table for storing article
metadata.

") Select a Serverless template File:

Import: Browse

@

Cancel __ Finish

As you can see, there are two articles: cetarticle and putarticle. Let's have a look
at the put article Lambda function first:

I ittt
| package con. serverless, deno, function;
:

Siaport java. io,ByteArrayIputStrean;
¥
Rage
0 It reads all the query paraneters as the etadata for this
'=§28 *article and stores then to a DynanoDB table. It reads the payload as the content of the article and stores it to a 83 hucket.
0 Y
30 public class Puthrticle inplenents RequesthandlerServerlessinput, Serverlesstutputs {
'}31 // DynanodB table nane for storing article etadata,
31 private static final String ARTICLE TABLE JAKE = Systen,geten{"MRTICLE TABLE WAKE);
B3/ Oyanclh table attribute nane for storing article id
(4 private static final String ARTICLE TALE_ID JAKE = "1,
35 /] DynanoDB table attribute nane for storing the bucket nane where holds the article's content,
36 private static final String ARTICLE TABLE_BUCKET WAME = “bucet’;
31/ DynanodB table attribute name for storing the bucket object key name that contains the article's content,
5 private static final String ARTICLE TABLE KEY A = 'Yy
B9 /] 53 bucket nane for storing article content,
i private static final String ARTICLE_BUCKET NAKE = System, getenv("ARTICLE BUCKET NAYE');
fle goverride
S0 public ServerlessCutput handleRequest (ServerlessTaput serverlessToput, Context contert) {

l-itu [/ Using builder to create the clients could allow us to dynamically load the region fron the ANS REGION environment
e (] variable. Therefore we can deploy the Lanbda functions to different regions without code change,
15 AnazonDynanadB dynanobh = AmazonDynanaDBCientBuilder standard() build();

16 AnazonS3 §3 = AnazonS3ClientBuilder. standard() build():

.147 ServerlessOutput output = new ServerlessOutput();

{48

9 try {

0 String keyNane = UUID. randonlUI0() . toStringl);

|;51 String content = serverlessInput,getBody ()

5 53, putObect(new PutObectRequest(

153 ARTICLE BUCKET MAKE,

il Keyhane,

055 new ByteArrayInputStrean(content. getBytes (StandardCharsets TF 8)),

|§56 new Ojecthetadatal)

il)

i

i) MapeString, AttributeValue> attributes = convert(serverlessInput.getOueryStringParaneters());
|;;f:ﬂ attributes. putlAbsent ARTICLE TABLE 10 NARE, new AttributeValuel). withs (WID. andonlUID() toString()));
li;ﬁl attributes.put (ARTICLE TABLE BUCKET NANE, new AttributeValue() .ithS(ARTICLE BUCKET NANE);

i) attributes. put (ARTICLE_TABLE_KEY NARE, new AttributeValue() withS(keyNane));

i dynancl. putlten(new PutltenRequest (|

il 1thTableNane (ARTICLE TABLE NANE)

[ithTten(attributes));

e utput. setStatusCode(266);

i

As you can see in the previous comments, the Lambda function is supposed to
be created by a HTTP post request through an API Gateway. We'll read the
metadata from our HTTP request and store that metadata in a DynamoDB table
record. Then we'll take the payload from our post body and store the payload in a
S3 object in a S3 bucket. The table name, the table schema, the bucket name,

and so on are specified here:

I Pttt e
1 J/ DynenolB table nane for storing article netadata
private static final String ARTICLE TABLE MANE = Systen.getenv("ARTICLE TABLE WAKE');
I/ DynanodB table attribute nane for storng article id
private static final String ARTICLE TABLE ID WAKE - 'id';
/[DynanaDB table attr MWMHWWWHMHWHWMMHMMMMwWM
String ARTICLE TABLE BUCKET NAME = “bucket",
attribute nane for storing t the et o t object Key nane that contalns the article's content,
)

private static final

/| DynanolB table att
private static final String ARTICLE TABLE KEY NAKE = “key';

f
r
tribut
r
tribut
r
l
r
1//$3 bucket nae for storing article content,
r

t
1
trin
1
trin
1ot
t
;
t

]

)

3

!

3

36

]

3

3

4 private static final String ARTICLE BUCKET NAME = Systen.getenv("ARTICLE BUCKET WAKE');

4 @verride

12 public ServerlessOutput handleRequest (ServerlessInput serverlessnput, Context contert) {

i [/ Using builder to create the clients could allow s to dyrrarrrrallyl ad the region fron the AVS REGION envir
U I/ variable, Therefore ve can deploy the Lanbda functions to different regions vithout code change,

45 AazonDynanoDB dynanald = AnazonDynanodBCLientBuilder.standardl) build();

I Anazon$3 3 = AnazonS3CLientBuilder. standard|) build(;

4] ServerlessQutput output = nex Serverlessdutput();

i

i ty {

5 String kelane = U randarrUUID()to tring();

51 St gron ent = serverlessTnput. getBody

52 ut0bject (new Putbjec Reques[

5 ARTIfLE_BUCKET_NME,

54 Keyane,

5 el By teArrayInputStrean(content getBytes StandardCharsets.TF 8)),

56 nei 00jectietada a(})

5]
3
59
il
il
bl
b3

)

MapeString, AttributeValue> ttributes = conver (server essInpu tgtOueryStrin raneters));
attributes, putTfAosent (RTICLE TABLE 10 NAME, new Attributelal ue() wihSUUID. randonlUIDY) toString()));
riutesput ARTCLE TABLE BUKET JWR, new Attributelalue) ithARTICLE BUCET MAKE)

ributes. put ARTICLE. TABEKEY WARE, e Attributebalue) it keyhane] .

0o, putl

;
t
it
it
dynen

P
t
I
t
n

UtTten(new Put emRe lest()

If we scroll down to the Lambda function handler, we can see that it takes an
object of type serveriessinput as input. And, in return, it expects a serverlessoutput
object, which you can see in the following screenshot:

= Package ExplorerES| sl - M =
rrdemo

~iz JavaBlog
@ src/main/java
~ & com.serverless.demo.function
b [J] GetArticle java
~ [1 PutArticle.java
» @ PutArticle
~ & com.serverless.demo.model
* 1 ServerlessOutput.java
#src/main/resources
#src/test/java
= src/test/resources
» =i Maven Dependencies
+ =4 JRE System Library [JavaSE-1.8]
Y =src
=target
[pom.xml
@ README.html
™serverless.template

These objects basically wrap around the HTTP requests. For example, in the
serverlessinput, OUr input has a body of headers, querystringparameters, and so on:

Pgt;'_rti__c_l_e_.j_avg |19 Serverlessinputjava = 5|
1 package com.serverless.demo.model;

import java.util.Map;
public class ServerlessInput {

private String resource;

private String path;

private String httpMethod;

private Map<String, String> headers;

private Map<String, String> queryStringParameters;
private Map<String, String> pathParameters;
private Map<String, String> stageVariables;
private String [GEN];

private RequestContext requestContext;

private Boolean isBase64Encoded;

public String getResource() {
return resource;

N e
CWVWONOUVAEWNHDWOWONOU A WRN

21s public void setResource(String resource) {

22 this.resource = resource;

23

24¢ public ServerlessInput withResource(String resource) {
25 setResource(resource);

26 return this;

27 }

28s public String getPath() {

29 return path;

30 ¥

31s public void setPath(String path) {

32 this.path = path;

33 }

34s public ServerlessInput withPath(String path) {
35 setPath(path);

36 return this;

37 }

3R public String getHttpMethod() {

So, let's go back to the put article Lambda function handler and see what it does:

40 pubtic ServertessQutput hendleRequest(ServerlesInput serverlessImut, Context con ex {)

i Ik gbmde to create the cLients could allow us to cynanically Load q fron the AKS REGLON envi
L I/ variable. Therefore ve can deploy the Lanbde functions to different regmns Without code change,
s AnazonDynancd dynencdp = AmazonDynamoDBCllenth der standaral) buald();

g AnaonS3 3 = Amazond3CLientBuloer. standard . butld();

4 ServerlessOutput output = new Serverlesslutput();

i

4 try {

o String keyhane = randomUUID() tringl);

Bl String content = sewtr out.getBocy();

f52 63.put0nect new Putlhjec Request(

§§53 ARTICLE_BUCKET_NAME

o e,

S ne ByteArrayInputStreant content, getBytes(StandardCharsets.TF §)),

il new Ojecthetadata]))

J }

o

o NapcString, Actributelale> atiributes = convert(serverlessInput, get[]uery ringaraneters();
i attrioutes. ucTfAbsent (ARTICLE TABLE ID AYE, new Actriutelalued .withS (UMD, randomUUID(] tring()));
il stribites.utARTICE TABLE BUCKET JANE, v Attributelelie) it ARTICLE UCKET)):

i sterotes Ut ARTCLE_TABLE FEY JAAE, new Actributlelie) it e)

i Oyt ptTten{ne PutTHenReguet

il NithTable ameHARTICLE THBLE JAYE)

The first things that you can see in the preceding screenshot are the instantiated
DynamoDB client and Amazon S3 client. We already prepared the
serverlessoutput Object that we return through our synchronous function location:

AmazonDynamoDB dynamoDb = AmazunhynémuﬂBClientBuilder.standardl[].buildl[};
AmazonS3 s3 = AmazonS3ClientBuilder.standard().build();

Then we create a random UUID, which we use as a key name for our S3 object
that we create to start the payload:

String keyName = UUID.randomUUID().toString();
String content = serverlessInput.getBody();
s3.putObject (new PutObjectRequest(
ARTICLE BUCKET_NAME,
keyName,
new ByteArrayInputStream(content.getBytes(StandardCharsets.UTF 8)),
new ObjectMetadata())

We read the payload from our serveriessinput 0bject, which we retrieve in the
function handler, and we execute an S3 putobject request with our article bucket
name, which we set up using environment variables. We use the key name with
the randomly generated UUID, and as input content we read a sytearrayInputstream
from the content that we have retrieved.

So, in the previous piece of code, we store an object, which is the payload of our
HTTP post body, in S3 as a new object.

We also store or create a new Dynamo DB record using a putitem request, as
shown here:

Map<String, AttributeValue> attributes = convert(serverlessInput.getQueryStringParameters());
attributes.putIfAbsent (ARTICLE TABLE ID NAME, new AttributeValue().withS(UUID.randomUUID().toString()));
attributes.put(ARTICLE TABLE BUCKET NAME, new AttributeValue().withS(ARTICLE BUCKET NAME));
attributes.put(ARTICLE TABLE KEY NAME, new AttributeValue().withS(keyName));
dynamoDb.putItem(new PutItemRequest()

.WithTableName(ARTICLE TABLE NAME)

WithItem(attributes));

The putiten request is performed on a DynamoDB table. The table name is
specified using environment variables, and the attributes are specified as shown
in the previous screenshot. The attributes specify our hash key, which is the table
ID. The previous piece of code will set a randomly generated ID. We're using a
string type, and we reference our S3 bucket and the key of our S3 object that we
store in the bucket. So, in our DynamoDB table record, you reference the
payload that we have stored in Amazon S3.

If we scroll down after we return these two requests, we set the status code on
our serverlessoutput Object and set the body as a successfully inserted article, as
shown here:

output.setStatusCode(200);
output.setBody("Successfully inserted article " + attributes.get(ARTICLE TABLE ID NAME).getS());

If you take a look at the cetarticie function, you will notice that that the cetarticle
function is supposed to be triggered through an HTTP get event, and it reads the
query parameter ID, retrieves the content, returns the content that we have stored
in our S3 bucket as a new object, and returns that as payload in our HTTP
response.

Now, if we validate our input as shown in the following, we expect to have a
query parameter that contains the article table ID name, which is id, and if it is
not set, we throw an exception:

if (serverlessnputgetQueryStringParaneters() == null || serverlessInput.getQueryStringParaneters() .qet (ARTICLE TABLE ID NAE) == mull) {
throw new Exception("Paraneter * + ARTICLE TABLE ID NAME + " in query must be provided!");
}

If the query parameter is set, then we use it to query our DynamoDB table and
we retrieve our item from our DynamoDB record at that ID:

Map<String, AttributeValue> item = dynamoDb.getItem(new GetItemRequest()
.withTableName(ARTICLE _TABLE NAME)
.withKey(key))
.getltem();

We retrieve the key of our S3 object from the item that has been returned
through our DynamoDB cet1tem request:

String s30bjectKey = item.get (ARTICLE_TABLE_KEY NAME).getS();

Once the content has been retrieved, set that content in the serverless output.
Another important file that has been generated with our serverless project is the

serverless.template file:

"Description’: 'Sinple article service.',
"Paraneters' : {
"rticleBucketlane’ : {

}

"Type" : 'String’,

"Default": "serverless-hlueprint-article-hucket’,

"Description’ : "Nane of §3 bucket used to store the article content, If left blank, AYS CloudFornation vould manage this resource.',
"MinLength" ; "¢"

rticleTableName’ : {

"Type : "String’,

"Default": "serverless-blueprint-article-table’,
"Description’ : "Nane of DynanoDB table used to store the article netadata, If Left blank, ANS CloudFornation would manage this resource.',
"Mnlength" ; 0"

"ReadCapacity’ : {

|

}
}V

"Type" : "Nunber",

"Description’ : "Read capacity for the DynamalB blog table.",
"Default" ; '3,

"MinValue" : 1

riteCapacity” : {

"Tyoe" : "Munber",

"Description’ ; "Write capacity for the DynanolB blog table.",
"Default’ : 3",

"Minlalue" : 1

Let's take a look at what we find in the previous code in detail. For our
application to work, besides our Lambda functions, we also need an S3 bucket
and we need a DynamoDB table. You will be able to see some parameters that
specify the name of our S3 bucket, the name of our DynamoDB table, and the
configurations of our DynamoDB table.

Below the template, we can see some resources that get set up through this
template:

"GetArticle": {

"Type": "AWS::Serverless::Function”,

"Properties": {
"Handler": "com.serverless.demo.function.GetArticle",
"Runtime" : "java8",
"CodeUri" : "./target/demo-1.0.0.jar",

"Policies": [
"AmazonDynamoDBReadOnlyAccess",
"AmazonS3ReadOnlyAccess"

1,

"Environment" : {
"Variables" : {
"ARTICLE_TABLE_NAME" : { "Ref" : "ArticleTableName" },
"ARTICLE_BUCKET_NAME" : { "Ref" : "ArticleBucketName" }
}
}

"Events": {
"GetResource": {
"Type": "Api",
"Properties": {
"Path": "/",
"Method": "get"
}
}
}
) }

First, the cetarticie Lambda function and the Lambda function have a policy that
allows our Lambda function to read from the DynamoDB table and our S3

bucket. So, we restrict these policies to our table and our bucket in the
application, as shown in the following:

"Policies": [
"AmazonDynamoDBReadOnlyAccess",

"AmazonS3ReadOnlyAccess"

"Environment” : {
"Variables" : {
"ARTICLE_TABLE_NAME" : { "Ref" : "ArticleTableName" },
"ARTICLE BUCKET_NAME" : { "Ref" : "ArticleBucketName" }
}
o

Now the putarticie function has full DynamoDB access and full Amazon S3
access:

"PutArticle": {

"Type": "AWS::Serverless::Function",

"Properties": {
"Handler”: "com.serverless.demo.function.PutArticle",
"Runtime" : "java8",

"CodeUri"” : "./target/demo-1.0.0.jar",
"Policies": |
"AmazonDynamoDBFullAccess",

"AmazonS3FullAccess"

8 For a production application, you might want to restrict these access rights a little bit further.

Further down, we can see our resource, which specifies our DynamoDB table
using the parameters that we have defined previously:

"ArticleTable": {
"Type": "AWS::DynamoDB::Table",
"Properties": {
"AttributeDefinitions": |
{
"AttributeName": "id",
"AttributeType": "S"

}
] r
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"

15
"ProvisionedThroughput”: {
"ReadCapacityUnits": {"Ref" : "ReadCapacity"},
"WriteCapacityUnits": {"Ref" : "WriteCapacity"}
ks
"TableName": {"Ref" : "ArticleTableName"}

And, finally, we can see our articlesucket, which is using the parameters defined
previously:
"ArticleBucket": {

"Type": "AWS::S3::Bucket"”,
"Properties": {

"BucketName": {"Ref" : "ArticleBucketName"}
}

OK, now let's upload our serverless project by right-clicking on JavaBlog and
going to the Amazon Web Services | Deployed Serverless Project button. In this
book, we are deploying it in the EU Central region in Frankfurt. This will create
a cloudrormation stack with the stack name savaslog-devstack, and then the
cloudrormation Stack will be used to provision the AWS resources, maybe to
Lambda functions, the DynamoDB table, and the S3 bucket, with the appropriate
policies. Click on Finish.

x Deploy Serverless application to AWS
Fill in stack template parameters aWS

Provide values for template parameters.

ReadCapacity |3
Read capacity for the DynamoDB blog table.

ArticleBucketName | serverless-blueprint-article-bucket-23648817236827282
Name of S3 bucket used to store the article content. If left blank, AWS
CloudFormation would manage this resource.

ArticleTableName | serverless-blueprint-article-table
Name of DynamoDB table used to store the article metadata. IF left blank, AWS
CloudFormation would manage this resource.

WriteCapacity (3
Write capacity for the DynamoDB blog table.

@ < Back Next > Cancel Finish

As you can see in the preceding screenshot, our serverless application is being
created using the cioudrormation stack.

Now, before we deploy our serverless project, we need to change one thing
because all S3 bucket names are shared in the global namespace. So, we need to
change this bucket name to something else because some other person who uses
the AWS Toolkit plugin might have already created this bucket, so we might
want to avoid that. For now, we just create a random string of numbers and hope
that nobody else has used this bucket name yet:

"Default": BIACIREE aprint-article-bucket-23648817236827282",

So don't use the exact numbers given here, use something random.

Once you enter, click on the Java blog and Deploy Serverless Project. Select the
AWS region and use JavaBlog-devstack as a CloudFormation stack name. Click
on Finish:

P Byt

i

A JvaBlog-devstack - EU Frankfurt

e

TieJn 90907208
N/A

Lttt ToeJn 90LR2515T208

Gakhine: nablogdehc (e
G BN RO CeleTrent
Sausesson.

bl s

Descrpton:~~ Siple e servie

Quput

Events Resources Parameters Qutputs

Fient Tme S

Tie Jn 19014328 T 2§EREATE_IN_PROGRESS
Tie Jn 1901328 T ZE:EREATE_IN_PROGRESS
Tie Jn 1901328 T ZQEREATE_IN_PROGRESS
Tie Jn 190143 28ISTZE:CREATE_IN_PROGRESS
Tie Jn 19014325 T ZQEREATE_IN_PROGRESS
Tie Jn 19014310 T ZE:REV\EW_IN_PROGRESS

feseelipe— Logedl D
WS Cebe
ANSLROe Pthtdeol
SR okl
kiR i
A CloudFormatin:t c el et
A CloucFormatin:tac q el et

el

J Blogeustack et tu Resourc reation e
il kPutArtmResour (e it

Reason

amansdoudfomalone e it
amavscioufomalionet se ieed

Now the Lambda function code has been uploaded to S3 and our serverless
CloudFormation template is used to create the stack of resources that we need-
the Lambda functions, cetarticie and putarticie functions, the DynamoDB table,
the S3 bucket, and the respective IAM policies-so that our Lambda functions are
able to access DynamoDB and its three or four read and write operations,

respectively.

® Javalog devstack

1 JavaBlog-devstack - EU (Frankfurt)

Tue Jn 19014736 ST201

SackName: JavaBlog devstack Created:
Status: (REATE COMPLETE Create Tmeaut: NA
Status Reason: |

Last Updated: Tue Jun 19 01:47:46 15T 2018

Rollack o Falre: Yes
Description:
Output:

Simple artile service.
ttos:/ 20cRSSixd2. exacute-apleucentral | amazonaws.com/Frod

Events Resources Parameters Outputs

Event Time
Tiie Jun 19 01:48:22 157 2018

State

Resourca Type
AWS:Lambda:Permission

Logical D

Physical (D

Reason

Tue Jun 19.01:48:21 15T 2018
Tue Jun 19 01:48:21 15T 2018
Tue Jun 18.01:48:21 15T 2018
Tue Jun 1901:48:21 ST 2018
Tue Jun 19.01:48:21 15T 2018
Tue Jun 15.01:48:21 1ST2018
Tue Jun 19.01:48:21 15T 2018
Tue Jun 19.01:48:19 15T 2018
Tue Jun 19.01:48:18 15T 2018
Tue Jun 19.01:48:18 15T 2018
Tue Jun 19 01:48:16 5T 2018
Tue Jun 19 01:4B:1515T 2018
Tue Jun 19.01:48:15 1T 2018
Tue Jun 19 01:48:15 15T 2018
Tue Jun 19.01:48:14 15T 2018
Tue Jun 19.01:4B:14 15T2018
Tue Jun 19.01:48:12 15T 2018
Tue Jun 19.01:48:1217 2018
Tue Jun 19.01:48:11 15T 2018
Tue Jun 19 014T:50 1ST2018
Tue Jun 19.01:47:50 1T 2018
Tue Jun 19.01:47:49 15T 2018
Tue Jun 19.01:47:49 T 2018
Tue Jun 19 0147:49 15T 2018
Tue Jun 19.0147:49 15T 2018
Tue Jun 19.01:47:49 15T 2018
Tue Jun 19.01:47:49 15T 2018
Tue Jun 19 0147:46 1ST2018

CREATE IN PROCRESS
CREATE COMPLETE

CREATE N PROCRESS
CREATE N PROCRESS
CREATE N, PROCAESS
CREATE N PROCRESS
CREATE IN PROGRESS
CREATE N PROCRESS
(REATE_COMPLETE

CREATE N PROCRESS
CREATE IN PROGRESS
CREATE COMPLETE

CREATE COMPLETE

CREATE N, PROCRESS
CREATE IN PROGRESS
CREATE N PROCRESS
CREATE N PROCRESS
CREATE COMPLETE

CREATE COMPLETE

(REATE COMPLETE

CREATE N PROCAESS
CREATE N PROCRESS
CREATE N PROCRESS
CREATE N PROCRESS
CREATE N PROCRESS
CREATE N, PROCRESS
CREATE N PROCRESS
CREATE N PROCRESS

CREATE IN PROGRESS

AWS:DynamaDB:Table
AWS:Lambda:Permission
AWS:Lambda:Permission
AWS:Lambda:Permission
AWS:ApiCateway:Deployment
AWS:Lambda:Permission
AWS: Lambda;Permission
AWS:ApiCateway:RestApi
AWS:ApiGateway:RestAp
AWS:ApiGateway:Restipi
AWS:Lambda:Function
AWS:Lambda:Function
AWS:Lambda:Function
AWS:Lambda:Function
AWS:Lambda:Function
AWS:Lambda:Function
AWS:|AM:Role
AWS:IAM:Role
AWS:S3:Bucket
AWS:S3:Bucket

AWS: DynamaDB:Tible
AWS:IAM:Role

AWS: IAM:Role
AWS:DynamaDB:Table
AWS:S3:Bucket
AWS:IAM:Role
AWS:|AM:Role

AWS: CloudFormation: Stack

PukArticlePutResaurceParmiss JavaBlog-devstack-PubArticleP Resotrce creation Initiated

ArticleTable
PutArticlePutResourcePermiss
GetArticleCetResourcePermiss
PutArticlePutResaurcePermiss
ServerlessRestApDeployment
(et ArticleCetResourcePermis:
GetArticleCetResourcePermiss
ServerlessRestApl
ServerlessRestApl
ServerlessRestApi
Puthrticle
GetArticle
Puthrticle
GetArticle
Puthrticle
GetArticle
PutArticleRole
GetArticleRole
ArtcleBucket
ArticleBucket
ArticleTable
PutArticleRole
GetArticeRole
ArticleTable
ArticleBucket
PutArticleRole
GetArtileRole
JavaBlog-devstack

serverless blueprintartide ta

JavaBlogdevstack-GetirticleC

10c855ikd2
10ckS5ixa?

JavaBlog-devstack-Putdrtice-
JavaBlog-devstack GebArticle-
JavaBlog-devstack-Putrticle-
JavaBlog-devstack-GebArticle-

JavaBlog-devstack-PuthrticleR
JavaBlog-devstack-Cethvticle
serverless-blueprintartice-bu
serverless-blueprintarticle-bu
serverless-blueprint-article-tat
JavaBlog-devstack-Putirticlef
JavaBlog-devstack-CetArticleh

armaws cloudformation:eu-cer,

Resouree creation Initiated

Resource creation Initiated

Resaurce creation nitiated
Resource creation [nitiated

Resurce creation Intiated
Resource creation Initiated
Resource creation Initiated
Resource creation Initated

User Initated

As you can see in the preceding screenshot, our Lambda functions and the IAM
roles of our Lambda functions have been created. Now our Lambda functions
are provisioned. Our API Gateway is set up. We have set the permissions. So,
basically, all the AWS resources specified in our serveriess.template file are used
to set up and configure our application.

If your provisioning process has failed, please make sure that you change the bucket name;
otherwise, it will fail and the error message will say something like this bucket already exists.

OK, now let's head over to the AWS Management Console. Open the AWS
Management Console and on the dashboard of cioudrormation, if you scroll further
down, there is a new stack, savaslog-devstack, which has just been created through
Eclipse:

JavaBlog: evstack

Stack name:

Stack ID:

Status:

Status reason;
Termination protection:
[AM role;

Description

» Quiputs

) Resources

v Events

Fiter by: Status »

2018-06-19

01:48:34 UTC+0550
(1:48:32 UTC+0550

01:48:32 UTC+0550

01:48:32 UTC-+0850

01:48:32 UTC+0550

(1:48:26 UTC+0350
(1:48:25 UTC+0350
01:48:24 UTC+0550
01:48:22 UTC+0550

JavaBlog-devstack

amaws cloudformation-eu-central-1.019859648260stack!JavaBlog-devsack/ad535h20-7334- LeB-0d2-Glab8anfzle

CREATE_COMPLETE

Disabled

Simple article service.

Stafus

CREATE_COMPLETE
CREATE_COMPLETE

CREATE COMPLETE
CREATE_COMPLETE
CREATE COMPLETE
CREATE COMPLETE
CREATE IN_PROGRESS

CREATE IN_PROGRESS
CREATE CONPLETE

Type

AWS: CloudFomation: Stack

AWS: Lamhda:Permission
AWS: Lamhda:Permission
AWS: Lamhda:Permission
AWS: Lamhda:Permission
AWS: ApiGateway: Stage
AWS: ApiGateway: Stage

AWS: ApiGateway: Stage
AWS:: AoiGateway: Deployment

Logical ID Status Reason

JavaBlog-devstack

PutArticlePutResourcePermissi
onTest

PutArticlePLiResourcePermissi
onProd

GetArticleGetResourcePermissi
onTest

GetArticleGetResourcePermissi

onProd
ServerlessRestApiProdSlage
ServerlessRestApiProdStage Resource creation Iniiated
ServerlessRestAiProdStage

ServerlessRestAniDeployment9

Other Actions | Update Stack |

If you click on that, you can see the same information that we have in Eclipse.
The operations are processed based on our template. We can also see the
template file that was used. Let's take a quick look at the resources that we have
provisioned using cioudrormation, then let's try it out:

s il 10/ GET - Method Execution :

v/

= i Nethod Reges ' egralon Regues ' -
b

RT TEST]
,, b NONE Tipe: LAVBDA PROY 7
ARN: amaws etecutepiel-ental- E

) LOISESSEAB2S0Z0CR5SGEGET = =) g

b

!

0

¢

i

0

¢

A

. %
: i
z 0
” ;
Method Respanse ' Iegralon Response |

0

0

Selectan It response. Proxy tegpatons cannot e configured f i

o responses. %

- . .

$

M

r

M

Q

N

On the API Gateway dashboard, you can see that two HTTP endpoints have been
created for get and for post requests, and they are integrated with our Lambda

functions. If you click on them, then you can see the Lambda function that has
been deployed, as shown in the following screenshot:

JavaBlog-devstack-GetArticle-1L12447WELEQZ

Configuration Monitering
¥ Designer
Add triggers .g
API Gateway
111 AP| Gateway
AWS loT ke

CloudWatch Events Add triggers from the list on the left
CloudWatch Logs

CodeCommit

Cognito Sync Trigger

DynamoDB

Kinesis

53

SNS

Function code s

Code entry type Runtime

Upload a ZIP or JAR file v Java g

Function package®

[Upload

Environment variables

ARTICLE_BUCKET_NAME

ARTICLE_TABLE_MAME

| Thrattle || Qualifiers ¥ H Actions ¥

JavaBlog-devstack-GetArticle-1LI2447WELE
Qz

m AWS Lambda

; Amazon CloudWatch

5 Amazon CloudWatch Logs
. Amazon DynamoDB

0 Amazon DynamoDB Accelerator (DAX)

ﬂ Amazon EC2
* Amazon 53

Handler info

v com.serverless.demo function. GetArticle

iz Learn more
serverless-blueprint-article-bucket-23648817236827282

serverless-blueprint-article-table

"=

Remove

If you go to DynamoDB, you cdan see da new table, serverless-blueprint-article-

table.

severless-blueprntarcledable (o
(WCECHES Delefe table P [I - I 0

Oveview tems Mefics Alams Capacity Indexes Global Tables Backups Triggers | Access confrol | Tags
() Fiter by e ame X

Name : Actions v ¢ 0

BhgTable Sean: Table] serverlessblusprint-aricle-table: id A Viewing 0 o ifems
0 seneressbleprntarck-aoe o
[Takl] serveress-blugprint-aril-table; id

0 Add fiter

St earch

An tem consiss ofane or mare afriutes. Each atnfute consists of name, a data ype, and aualue. When you read o write an tem, the on airbutes tha are
required are those that make up the pimery key. More o

There are no items stored yet. If you go to S3, you can also see the S3 bucket
that has been created.

Go back to the API Gateway. You will see the URL endpoint that we can use to
test our application, using Postman. Open Postman, paste the URL from our
endpoint, and select the post method. We'll make the first request by using
simple, plain text, Hello world, and pressing Send:

i m hme B

ke 4 o

fon et

N TV S v R it
O T I i

WIS NSHIVAG,

i el m YL Py

e
ks sl ORIV T
e e ﬂ

MO e e 6L 00 7 T

Now as you can see in the previous screenshot, we get back a message that looks
like an error, but, actually, if we take a look at the raw message, it says

successfully inserted article at ID. So let's do a get request using that ID:

i
1
‘ de []
1 ilnan
kgas | I v
e

b One ekl Talal

T

bl i

fme V0

b i !

i

e o W

This will return our Hello World text. Let's try another attachment for binary,
maybe. Attach a JPEG file to your request, which will create another entry in
DynamoDB and S3. Let's retrieve it:

NEW ﬂ] Runer ~ Import [1 Bilder 'l', "!’ S) ‘ " v

NoEnronment v 0§
¢ fipsipmbyite @+
History
e GET v sy evecuealecenta amaionans com/StageNeedeTe2 (B33 tead 9038266572 Params S ¥
(learal
Authorizaion ~ Headel PrarequestScrlpt Tt (e
Type No Auth
L] HI\‘IP‘;““T&S[H\,‘”\.‘“"
RUEOR g e sl Test Sealis 000K Time 1262
(i QP30 R —
T hitps.a3miiynh b P
ﬁi"‘.“.l\@‘:!ﬁri BlHE
R

AT TIETTETIT tfOT CTTTICATREVAOIT, (EEEECGoog {22 N TETTTITITNTIITE TG G I
i

(IO,)08 e W0RCD
[
[

LL(((((HH((((((H(H(U((([t[(((((l(((ll(l{((!([UWE]]J LG IR
W T T ATR oo Ras et
l—'w ()'as 80 COEFGHL STV 2c g 1stuoty2 006 000660006160601000006086 6006656006068 600000060008 000Ub0bEHBG08H800 T T T
mm PMUW I AT 2 TGO 3t
FSWUDWD& U T80: CORFGHT)STUWRAYZedefoftstuwy 2 GREAEAEERERRAEGEEGATOAELAAUEOARIARIAAATAOARTARLERLARRRRERIRABRA TITTTITIY
GO U T A R e TR
W0 GGG - GO0 UF o0 Chbedeic BB AAABRAL L RRCO00ET B
e R T G A g A
fc, 566206 270600000000 566188118, 600200, R00080. 068 8060 B L 608 1100001 56V 08, /066) T (Lot
GRCYRBHEC)2 0
IR
A UGORT 0 G000, 0V RTCURRTABTTO 001U 60 o0l B M[MESO] TSBATL 0T
ARG i \00)6 smniu R 06166\ 6 2 miaw}icaé AGAAATOAT - <bbhtg6ioto, B RAADBATT-0FGR6 050, G|
08 b8 kit WWW b ORI 0010 B0 0, e CROR T s 8 SR BB BA S
48 80ROt
G000V 06T BACHT RCOBGATHOBYBR: - 197Redr ToBO A0S e 1O CcBOBLTR=bY KR B6ed 6 ST, b
012660) 08 WO, g 6 Rl R GRAATHTMG0 7 0GR o6V RORORC 1 -~08Ckn 603ch 4 QT \G67H8 60
mewe&f[amlanw\ukmxﬁnqujmsigmmmgmwm;sunmmgwjwm[[zumm kP00t T - OUES 5T B = Gkl
108 (n =20k
rﬁu@‘ﬂ%e&lﬁ]ﬁu&]ﬂ LB 16186 o' 60t \20 b, B0 obed
B, U608 Dl GE8AT8) oo 00000106 DBGRTC0 1 1T-DRKEH 56508 We82678 -
Gmwm»h%ﬂ FUR, 00 0000000 G060 AL 000k 9oeo F8)0" ATV 0t -OTE UTNSRRNG\ETERY 1

Now, if we take a look on our AWS Management Console, we can see two
records have been written into DynamoDB which reference the payload in our
S3 bucket. And if we look in the S3 bucket, then we can see two objects, as
shown here:

E]WS Senvves v Resource Groups v 4 [bost@ebs v Gty Syt

AAZON 53 3 sevelless-Huepyntarcle-duckek- 23400 11230627251

J Overview

Q Ty prfvand pess Ene o seach, Press ESCo e

L Uped | # Ceae i ERIERE EU (Frankfur) 2

Venng 102

V) Nane 12 Lagtodfid 1 e 1% Stragecoss 1~

[} el 48100 T Jin 16, 20102936 AMCNTHEX ~ 00KE e

[} el 405zl L Jn 8 D0ZHUMCNT00 1108 Slancrd

Vinimy L2

One is the He110 wor1d string and the other is the JPEG file.

If we go back to the CloudFormation dashboard, we can take another look at our
CloudFormation deployment. We can select Other Actions and View/Edit

Templating Designer. This will open a nice visualization of the resources
involved in our project:

£

PutArticl...
Permission

GetArticle
Function

. — L]
11 oa ¢)
141 141
Serverles... Serverles...
@ Deployment ® Sige pY
— 0 —

3

PutArticl...
Permission

GetArticl...
Permission

oy
N

GetArticl...
Permission

ArticleBu... PutArticl...
Bucket ® Roe
—

PutArticle
Function

@ .
GetArticl...

Rale
——iy

You can also download the image of our deployment. Lastly, close the designer
and delete the stack that we have just created, so that we don't have to pay for the
provision throughput of our DynamoDB tables. Click on Actions and Delete
Stack.

Summary

In this chapter, we learned how to use Eclipse with the AWS Toolkit plugin, and
we used Java to create and test different Lambda functions. First, we created and
tested a Lambda function with a simple string input/output, then a Lambda
function that is triggered through S3 events, and, finally, a serverless project that
consists of two Lambda functions that write to or read from DynamoDB and S3,
respectively. In the next chapter, we are going to take a look how to program
AWS Lambda using Python.

Programming AWS Lambda with
Python

In this chapter, we are going to learn how to program AWS Lambda with
Python. In this chapter, we are going to cover the following:

¢ Creating Python Lambda functions on the AWS Management Console
e Creating Python Lambda functions using the Serverless Framework
¢ Building a serverless web-application backend with Python

Creating a python lambda function

We are going to use the AWS Management Console to create Python Lambda
functions using function blueprints. We will deploy Python functions from the
blueprints and then test them.

Sign in to the AWS Management Console and navigate through the AWS

Lambda dashboard:
Functions &
Q)
Function name 4

blog-tey-deleteArticle

blog-dev-updateArticle

greeterHelloWorldSkill

MyJavaFunction
blog-dev-createArticle

blog-dev-readArticle

MyS3JavaFunction

handsFreeMesssengerSkill

firstLambia

Description

Please use alexa-skills-kit-nodejs-factskill from the Serverless
Application Repository

A starter AWS Lambda function.

Please use alexa-skills-kit-nodejs-factskill from the Serverless

Application Repositary

Runtime ¥

Nodejs 4.3
Nodes4.3

Mode,js
610

Python 2.7

Java 8

Nodejs4.3

Nodejs 4.3

Mode.js 4.3

Code

size ¥

216
bytes

> @
Last
Modified v

4 days ago

4 days ago

12 days ago

5 days ago

2 days ago

4 days ago

4 days ago

21 hours

ago

12 days ago

13 days ago

As shown in the preceding screenshot, you can see a list of all the Lambda
functions that have already been created throughout this book, most of them in

Node.js and also some in Java 8. Let's create our first Lambda function using
Python. Click on Create a Lambda function.

We can select the Lambda function from one of the available blueprints
provided. Let's start with a simple Blank Function blueprint. Click on the Blank
Function blueprint. Don't select the trigger and just click Next. We need to give
our function a name. For now, let's call it pyrun. Select the Runtime as well as
shown below:

Lambda) Functions) Create function

Create function
Author from scratch 0 Blueprints Serverless Application Repository
Start with a simple "hello world” example. Choase & preconfiqured template as 2 starting point for Find and deploy serverless apps published by developers,
your Lambda function. companies, and partners on AWS,
[_E_V My
Author from scratch o
Name
PyFun
Runtime
Python 27 J
Role
Diefines the parmisions of your function. Note that new roles may nat be available for 2 fow minutes after creation. Leam more about Lambda execution rolis
Choose an existing role \J
Existing role
You may use an existing role with this function. Note that the role must be 2ssumable by Lambda and must have Cloudwatch Logs permissions,
|
1IN Create function

It's now created as Python code. We have a very simple Lambda function
handler, which takes two arguments: an event that we invoke our Lambda
function with and the context that gives us runtime information on our Lambda
function. Let's add another statement that logs the event that we invoke our
Lambda function with. Instead of returning Hello from Lambda, return the

classic Hello wor1d. Scroll down a little bit further, as we need to configure the
IAM role that we want to assign to our Lambda function. For now, we use the
basic execution role, as shown here:

Lambda Functions Create function

Create function
Author from scratch 0 Blueprints i Serverless Application Repository
Start with a simple "hello world" example. Choose 2 preconfigured template as a starting point for Find and deploy serverless apps published by developers,
your Lambda function companies, and partners on AWS,
:7 ::’:\)';_.
=) __/ ({
Author from scratch 1o
Name
PyFun
Runtime
Python 2.7 v
Role
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Leam more about Lambda execution roles
Choose an existing role v
Existing role
b | an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch Logs permissions.
lambda_basic_execution v

Cancel Create function

Scroll down further and click on Next. Review the configurations and click on
Create Function. The following screenshot shows the successfully created
function:

Function code o

Code entry type Runtime Handler nfo

Edit code inling v Pythan 2.7 v lambda_function.lambda_handler

(8]

Fie Edt Find View Goto Tools Window s -u-

Byfun T |ambda function

t3 | lambda_function.py

Emwiranment

Let's test it with one of the test events. Click on Configure test events. We can
select whichever of the test events we like. For this chapter, we select the key 3
event. It doesn't really matter; it just prints it out on the console. Scroll down and
click Save and Test. This will execute or invoke our Lambda function, returning
Hello world. We can take a look at this excerpt from the log output, which states
the event you have selected.

Let's now go back to the Lambda dashboard, and let's create a more interesting
Lambda function from one of the other blueprints. You can select the blueprints
by the runtime. How about choosing the S3 get object type Python blueprint?

S3 trigger ‘ Remove |

Bucket

serverless-python-lambda-bucket-78940987654321 v
Event type

Object Created (All) w
Prefix

Filter pattern

Lambda will add the necessary permissions for Amazon 53 to invoke your Lambda function from this trigger. Learn more about the Lambda

permissions model

Enable trigger

As you can see, a trigger has already been pre-selected. We can also select the
Bucket that we want to use. It's Amazon S3 that triggers our Lambda function.
So, you can select whichever bucket you want to use. You just need to make sure
that a trigger for the Lambda functions on these object-created events doesn't
already exist. So, if you are not sure, just create a new bucket. You could also
restrict it to listen for only certain events, or for objects that start with a certain
prefix or that end with a certain suffix, but, for now, let's leave that empty. What
we need to do is click the enable trigger checkbox here, which gives Amazon S3
permission to invoke our Lambda function. Click Next.

Now we need to give our Lambda function name. For now, let's name it pyrunss.
Let's take a look at the code that has been generated for us using this blueprint:

Lambda function code
Code is pre-configured by the chosen blueprint. You can configure it after you create the function,

Runtime
Python 2.7

from _future_ import print function

1

2

3 import json
4 import urllih
5 import boto3
6

7
8

9

print('Loading function')

53 = boto3.client('s3')

18

11

12+ def lambda_handler(event, context):

13 #orint("Received event: " + json.dumps(event, indent=2))
14

15 # Get the object from the avent and show {ts content type

16 bucket = event['Records'][@]["s3"]["bucket']['name"]
17 key = urllib,unquote_plus{event['Records'][@][s3"]['object’]['key'].encode(utfg'))
18- try:

19 response = s3.get_ohject(Bucket=bucket, Key=key)
20 print("CONTENT TYPE: " + response['ContentType'])
21 return response['ContentType']
22 except Exception as e
23 print(e)
24 print('Error getting object {} from bucket {}. Make sure they exist and your bucket 15 in the same region a
25 raise e
26
+ I — b

As you can see here, we import couple of libraries and one of them is the boto
library, which you don't need to bundle with your source code because it's
already installed on the instance that executes this Lambda function. So, you
don't need to download and install this boto dependency. You can just use it by
importing it. Here, we create an S3 client using the boto client library:

53 = boto3.client('s3")

So, boto is a library used to call Amazon Web Services and, here, we want to call

S3 from within our Lambda function. This means our Lambda function is not
only triggered by an S3 event, we also want to call the S3 API from within our
Lambda function. When our Lambda function is invoked by an S3-object-
created event, we are going to do two things:

bucket = event['Records'][@]["s3']1["bucket']["name’]
key = urllib.unquote_plusi(event['Records'][@]['s3']["object']['key'].encode('utf8'))

We are going to read the bucket in which the object has been created. There
could be multiple buckets that trigger the same Lambda function. So, we retrieve
the bucket name and retrieve the key name of the object that has been created.
Then, we use the boto S3 client to perform a get_object request on S3; we retrieve
some more information about our object, such as the content type; and then we
print out the content type. What we could possibly do here is also retrieve the
object content to process it; for example, to create a thumbnail of a bigger
picture or to transform a Microsoft Word document into a PDF, or something
like that. So, if there's no error, then the content type will be printed out:

response = s3.get_object(Bucket=bucket, Key=key)
print("CONTENT TYPE: " + response['ContentType'])
return response['ContentType']
except Exception as e:
print(e)
print("Error getting object {} from bucket {}. Make sure they exist and your bucket is in
roise e T

Scroll down further to Lambda function handler and role. Here, we need to
create a new IAM role because we don't only need permission, and S3 not only
needs permission to invoke the Lambda function, but the Lambda function also
needs permission to retrieve information or to perform the get object request
here on S3. So, we need to give that role a name; here, a policy template has
been selected already, which is an object read-only permission, because we want
to read the content type. Let's call it pyFunssrole:

Name

PyFuns3
Role
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Leam more
about Lambda execution roles

Create new role from template(s) v
L i il ¥ [I 1 ssions from the selects at th i 3] 55l
[g1 dw il it If fu] 0N | lifu
Role name
Efler @ name for you

PyFunS3Role

(@ This new role will be scoped to the current function. To use it with other functions, you can modify it in the IAM console.

Policy templates
Choose ane or mare

permissions that ¢ glicy template w

nerated for you before your function is created. Learmn more about the

53 object read-only permissions X

Scroll down and click Next.

Review the configuration and click on Create function. Once the function has
been created, as shown in the following, let's test it with a synthetic event:

Qualifiers ¥ Selectotestevent, W || Test Save

Actions ¥ ‘

PyFunS3 [o

©) Congratulations! Your Lambda function *PyFunS3" has been successfull created and confiqured with serverless-python-lambda-bucket-78940987654371 as atrigger. You cannow. X
¢lick on the "Test" button to input a test event and test your function.

Configuration ~ Monitoring

¥ Designer
Add triggers ,9
Click on a trigger from the list E PyFunsa
bielow to 2dd it to your function
AP Gatew,

i ‘ 3 X ‘ Amazon CloudWatch Logs
AWS loT ‘
CloudWatch Events Add triggers from the st on the left ‘ Amazon $3
CloudWatch Lags

Resources the function's role has access to will be shown here

CodeCommit
53
serverless-python-lambda-bucket-78940987654321 O Enabled | peege
arrcaws:s3zserverloss-python-lambda-bucket- 7340587654321

Event type: ObjectCreated Notification name: d475999-5eff-4¢39-3688-7had698f1e3h

Click on Actions | Configure Test Event. And, instead of using the Hello World
event in the sample event template, let's use an S3 event:

Configure test event X

A function can have up to 10 test events. The events are persisted 50 you can switch to another computer or web browser
and test your function with the same events,

O Create new test event

Edit saved test events

Event template

53 Put v

Q
S3 Put i

53 Delete
AWS

CloudFront Madify Response Header
CloudFront AB Test

AWS Config Change Triggered Rule
CodeCommit

APl Gateway Authorizer

AWS Config Change Triggered Rule - Oversized
CloudFormation Create Reguest

SES Email Receiving

Rekognition 53 Request

CloudFront HTTP Redirect

AP| Gateway AWS Praxy

Kinesis Firehose streams as source

Scheduled Event

CloudWatch Logs i
ipgrstuvengy ZABCOEFGH ™,

SNS

AWS Batch Get Job Request | »

So, this S3 Put event should do the trick because it's an object-created event.
Click on Save and Test.

PyFun53 | Throttle H Qualifiers ¥ || Actions v Pythons3Event v | Test

@ Congratulations! Your Lambda function "PyFunS3" has been successfully ereated and configured with serverless-python-lambda-bucket-78940987654321 as a trigger. You cannow X
click on the "Test" button to input a test event and test your function

® Execution result: failed (logs) X

¥ Details

The area below shows the result returned by your function execution

{
"stackTrace": [
" fvar/task/anbda_function.py”,
25,
“lanbda_handler”,

“raise e"

L

“errorType™: "ClientError”,

areaciaceagalic "an anraroacciened fircasenaniady when. callinn the satdhdact anenstisar Arcsce fantad’ i
Summary
Code SHA-256 tQzPYiRAQRDArdSUYS0DMAI02gk I26exVBTE| G+5g= Request ID 602009-73d3-1168-8763-1509d8432141
Duration 670.77 ms Billed duration 700 ms
Resources configured 128 M2 Maxmemoryused 46 M8
Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view
the CloudWatch log group.

START Requestld: fsef2083-72d3
occurred (AccessDenie

28-8763-7383d8433141 Version: SLATEST

An et when calling the Getobject operation: Access Denied

Error getting object HappyFace.jpg from bucket scurcebu ake sure they exist and your bucket is in the same region as this function.
An errer occurred (AccessDenied} when calling the Getobject operation: Access Denied: ClientErrer
Traceback (most recent call last):

File "/var/ftask/lambda_function.py®, line 25, in lambda_handler

You can see in the preceding screenshot that we get an access-denied error. Why

is that? Actually, we get an error because our cetobject Operation does not have

permission to use the S3 boto client to perform that GetObject request. Instead of
tweaking the synthetic event, we can also go to our S3 bucket and just invoke the

trigger.

Go to the S3 bucket and upload a file. Once it has uploaded, take a look. Go
back to the Lambda dashboard, and click on Monitoring and View logs in
CloudWatch:

oy o oo) b) AR Rl

VNS
| bl § fo muﬁﬂ
e o DAL
H (G s
oy
s i
oo e ey
i) e
A SR ST AN e RS

[I" R oo Do et s
i

! £
M08 o g o et g i s

LE g et sl Tt el e s
bl

WMMWWWWWMW1
I
e

!
] e e

]
0B e D i o
et e e ey

Here, we can see a log stream, and we can see the GetObject operation has failed
because access is denied. But we can also see that manually invoking the S3-
object-created event has actually worked, and you can see the content type is an
image in the following format:

CloudWateh

Dashboards
Alams

Bling
Events
Rules
Event Buses
| Logs
Metrics

Favorites

Fitter events

Time (UTC +00:00)
8062
» 105358

y 105358
v 10535

CONTENT TYPE: inage/ipeg

v 10535
b 10535

CloudWatch > LogGroups > [awsflambdalPyFunS3 > 20180824/SLATESTE72627200814oSab T hefdfe3d2260e

Expandall @ Row -Texl‘ﬁ ﬁ‘ﬂl

Al NS 05

Message

Noolder events found af the moment. Rety.
Loading function
START Requestld: 641630ea-7541-116-570-6%ee0fBcd% Version: SLATEST
CONTENT TYPE: image/peg

END Requestld: 641630ea-7541-H1e8-970-69%eelffedda
REPORT Requeslld: 641630ea-7541-11a8-9f70-6%e0fBcada Duration: 790.79 ms Bl Duralion: 500 ms Memory Size: 128 M8 Max Memery Used. 45 M
No newsr events found af tre moment. Retry.

Using the Serverless Framework with
Python

In the previous section, we created our first Python Lambda functions on the
AWS Management Console. In this section, we will use the serverless
framework to create Python Lambda functions. We will invoke the function
locally, and then we will deploy and remotely invoke the function.

Open a terminal window in the Atom Editor. We will use the serverless
command-line interface to generate a Python Lambda function from the
template. If you don't have the serverless framework installed on your computer,
please head back to the install and setup video right at the beginning. You should
be able to execute this command to print out the serverless version that you have
installed. Currently, we're using serverless framework version 1.6.1. You can
create a new function using the command, sis create and specifying the template,
--template OT, for short, -t. Then set the runtime platform, set the language by
using aws-python, and giving the function the name pybiog, as shown here:

| sls create -t aws-python -n pyblog

This will generate some boilerplate code, which can be seen on the left-hand side
with the serveriess.ym1 file and a handier.py file that implement the Lambda
function handler. Let's take a look at the serveriess.ym1 file first.

There are some boilerplate comment codes, which can be deleted. There is then
the name of the service, which is pyb1og here; the provider name, AWS; and
Python version 2.7. We also want to change the region, as we want to deploy our
function in the eu-central-1 region in Frankfurt:
service: pyblog
provider:
name: aws
runtime: python2.7

stage: dev
region: eu-central-1

Following this, you can also see the reference to the Lambda function:

functions:
hello:
handler: handler.hello

The Lambda function currently has the name ne110. And it references the function
handler, the handler (the handier.py file), and the ne110 function in the py file,
which is shown here:

import json
def hello(event, context):
body = {
"message": "Go Serverless v1.0! Your function executed successfully!",
"input": event
3
response = {
"statusCode": 200,
"body": json.dumps(body)
3

return response

If we invoke this Lambda function with an event, it simply prepares a body with
a message property and an input property; in the input property, it just prints out
the event that it has been invoked with and then it prepares a response. The body
is dumped into JSON and then it returns the response.

You can locally invoke our Lambda function via sis invoke 1ocal, and then get the
function name with -f. Right now, the function name is he1io:

Serverless: Successfully generated boilerplate for template: "aws-python"

Adming

r
1

$ sls invoke local -f hello

"body": "{\"input\": {}, \"message\": \"Go Serverless v1.8! Your function executed successfully!\"}",
"statusCode": 200

As you can see in the preceding screenshot, it has worked. Hence, we can locally
invoke our Lambda function. Let's deploy our Lambda function:

Admin@Admin: a /) . gr: C amt ste $ sls deploy
Serverless: Packaging service...
Serverless: Excluding development dependencies...
Creating Stack...
s: Checking Stack create progress...

Stack create finished...
Uploading CloudFormation file to S3...
Uploading artifacts...
Uploading service .zip file to S3 (12.49 KB)...
Serverless: Validating template...
Serverl Updating Stack...

Serverless: Stack update finished...
Service Information
service: pyblog
stage: dev
region: eu-central-1
stack: pyblog-dev
api keys:

None
endpoints:

None
functions:

hello: pyblog-dev-hello

Let's now invoke it remotely. You can simply use the command from before, but
instead of llSiI'lg sls invoke local, W€ US€ sls invoke -f hello.

functions:
hello: pyblog-dev-hello
Admin@Admin:~/Desktop/ad 55/ ; !]a-mast 10n$ sls invoke -f hello

r
1

"body": "{\"input\": {}, \"message\": \"Go Serverless v1.8! Your function executed successfully!\"}"
"statusCode": 200

This invokes our remote L.ambda function.

In the next section, we are going to build a serverless backend, which is similar
to the backend that we built previously with Node.js, but this time we are going
to build it with Python.

Building a Serverless backend with
Python

In the previous section, we created a simple Lambda function using the
serverless framework and Python. Now we will create a more complex service
similar to the one that we created using Node.js, but using Python. In this
section, we will refactor the Lambda function from our previous section. We will
add DynamoDB for data persistence, create the other CRUD operations, and test
our deployed service using Postman.

Go back to the Atom Editor where we last left off. Let's refactor the handler
function a little bit. For example, we're going to replace the body with a short
message, created new article.

Let's print out the event that the Lambda function has been invoked with. Instead
of naming the function handler he110, we simply rename it handier:

def handler(event, context):
print('received event{}'.format(event))

body = {
"message": "Created new article"

}

response = {
"statusCode": 200,
"body": json.dumps(body)
3

return response

Now go to the serverless.ymi file and rename the file from he11o to handier. It
becomes handler.handle, but that sounds weird, so we change the name of the
handler.py file from handler to create, and then go back to the serveriess.ym1 and
call nello to create it, as shown here:

functions:

create:
handler: create.hello

Next, we need to give the Lambda function an IAM role that enables it to

perform certain DynamoDB operations. So, we replace the commented code
with the fOHOWiIlg IAM role statements:

provider:
name: aws
runtime: python2.7
stage: dev
region: eu-central-1
jamRoleStatements:
- Effect: Allow
Action:
- dynamodb:Query
- dynamodb:GetItem
- dynamodb:PutItem
- dynamodb:UpdateItem
- dynamodb:DeleteItem
Resource: "arn:aws:dynamodb:eu-central-1:186706155491:table/PyBlogTable"

Please be aware that the syntax is supposed to change from serverless framework
1.8 upwards, so when that happens, please take a look at the source code in our
repository. Do check that out in case it doesn't work with your version of the
serverless framework. What we need to do is give the Lambda function
permission; that is, allow it to perform certain actions-such as query, get item,
put item, and so on-on the resources previously shown. You should replace this
with your own resources, so you need to go to the AWS Management Console
after your DynamoDB table has been created and make sure that this is the
resource. In a moment, we will show you where you find it. After that, scroll
down further in the serveriess.ym1 file, where we will be able to create additional
resources using the CloudFormation resource template, by creating the
DynamoDB table that you will give your Lambda function access to, as shown
here:

resources:
Resources:
BlogTable:
Type: AWS::DynamoDB::Table
Properties:
TableName: PyBlogTable
AttributeDefinitions:
- AttributeName: article_id
AttributeType: S
KeySchema:
- AttributeName: article_id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

As you can see from the previous screenshot, the table name is pysiograble and it
has one hash key, articie_id, which is string type. We also specify the capacity

units, which is the throughput that is provisioned for the table.
The minimum setting is 1 for read and 1 for write.

The higher the settings, the more throughputs you get, so the more concurrent
requests you can make on your DynamoDB table, but also the higher your costs.
For our simple application, 1 and 1 are fine. So, once it is set, move over to the
function and add an HTTP event. Let's make it a post method instead of a get
method because this is a create operation, and, by specifying this here and
performing an sis a serverless deploy, we will also create the appropriate API
endpoint using the API Gateway service.

functions:
create:
handler: create.handler
events:
- http:
path: articles
method: post

Now go to the terminal and do an sis dep1oy, which will result in the following:

Admin@Admin:~/D : . . ') 1$ sls deploy
Serverless: Packaging service...

Serverless: Excluding development dependencies...

Serverless: Uploading CloudFormation file to S3...

Serverless: Uploading artifacts...

Serverless: Uploading service .zip file to S3 (12.52 KB)...

Serverless: Validating template...

Serverless: Updating Stack...

Serverless: Checking Stack update progress...

Serverless: Stack update finished...
Service Information
service: pyblog
stage: dev
region: eu-central-1
stack: pyblog-dev
api keys:
None
endpoints:
POST - https://jppj97nlo7.execute-api.eu-central-1.amazonaws.com/dev/create
functions:
create: pyblog-dev-create

Once deployed, let's invoke it remotely via sis invoke with the function name

create.

functions:
create: pyblog-dev-create
Admin@Admin:~/Deskto - 55/programmin . - $ sls invoke -f create

r
1

"body": "{\"message\": \"Created new article\"}",
"statusCode": 200

As you can see in the preceding screenshot, this returns the message created new
article. Now let's head over to the AWS Management Console and see if our
DynamoDB table has been created. Log into the AWS Management Console and
go to the DynamoDB dashboard.

(A Fite by table name X Vigwing 2 of 2 Tables
Name + Slatus * Pariton ey + Sortkey Indexes+ Totalread capacity + Totalwite:
Blog Table Actie artle 1d (Sting) - 0 l l
PyBlogTable (tie artle 1d (Sting) : 0 l l

As you can see, the pysiogTable has, in fact, been created. If you click on it, you
will be able to see some additional information. If you scroll down on the
Overview tab, you can also see the ARN, which is the string that identifies your
table as an Amazon resource. So, copy that and paste it into your serverless.yml
file in the iamrolestatements. The iamrolestatements giVES your Lambda function
permission to perform the actions on this resource, and this is the resource that
specifies your DynamoDB table.

Now we have created a DynamoDB table and our Lambda function has
permission to access the table, but, actually, if we take a look at the create.py
function handler, it doesn't really do anything yet. So, we need to replace the
code with the following:

from_future_import print_function #Python 2/3 compatibility
import json

import boto3

import uuid

def handler(event, context):
print('received create event{}'.format(event))
dynamodb = boto3.resource('dynamodb', region_name='eu-central-1'")
table = dynamodb.Table('PyBlogTable')
id = str(uuid.uuid1())

put_response = table.put_Item(
Item = {
'article_id': id,
"text': 'hello python'
3
}

print('put response{}'.format(put_response))

Here, we are importing the boto library. This is globally installed on the instance
that executes your Lambda function, so you don't need to install this dependency.
You can simply import it and use it; for example, here it is used to instantiate a
DynamoDB client. On the DynamoDB client, we want to access the pyslograble,
and, since we are going to create a new item, we are going to create a UUID;
then prepare a put_iten request with the following item content, which is an
article_id, with our randomly generated UUID and the following hard-coded text:
put_response = table.put_item(
Item = {
'article_id': id,

'text': 'hello python'
}

This will return the following put_response, which we are going to print out on the
console, and also we're going to play it back in our response, as shown here:

print('put response{}'.format(put_response))
response = {

"statusCode": 200,
"body": json.dumps(put_response)

Now we will do an sis deploy to update our service and then test if it works:

Admin@Admin: ktop/admi ' gra ' 2 thon$ sls deploy
Serverless: Packaging service...

Serverless: Excluding development dependencies...

Serverless: Uploading CloudFormation file to S3...

Serverless: Uploading artifacts...

Serverless: Uploading service .zip file to S3 (12.69 KB)...

Serverless: Validating template...

Serverless: Updating Stack...

Serverless: Checking Stack update progress...

Serverless: Stack update finished...

Service Information
service: pyblog
stage: dev
region: eu-central-1
stack: pyblog-dev
api keys:
None
endpoints:
POST - https://jppj97nlo7.execute-api.eu-central-1.amazonaws.com/dev/create
functions:
create: pyblog-dev-create

Once the service has been deployed, we use a synthetic dummy event to test the
Lambda function. Create a new file in your directory. Here, we name the new
event.json with the following content:

{
"body": {\article_id":\"8268c73-fdc7-11e6-8554-985aeb8c9bcc"\,\"text\": \"Hello
Universe\"}"

}

We then perform an sis invoke with the create function and specify the path to the
event.json file:

Admin@Aduin; ~/Desk ! hrog aster/python sls invoke -f create -p event.json

pts\": 8, \"HTTPStatusCode\": 200, \"RequestId\"; \"742VSAUSNUQGEJFELDAT3VHMARVVAKONSOSAEMYJF6BQ2AS
X-anzn mwM”MWWMWMM“WMWMMWU%WWPMMMMM“MW”WWH”

: ”‘\:W%wﬂwa””xMNH”“‘”HMHN‘WM@””%thmwwm%ﬂMWW\cmw ype\"; \"applicat
son-1.0\"}}}",
sCode"; 200

After invoking this, we head back to our AWS Management Console and go to
the DynamoDB dashboard. Have a look in the Items tab:

PyBlogTable Close 180 0

Overview tems Metrics Alarms Capacity = Indexes GlobalTables Backups ~ Triggers More v

Actions v ﬁ 0

Scan: [Table] PyBlogTable: article_id A Viewing 1to 1 items

Tale yBlogTae: aric i i .

© Add filter

Start search

article_id text

dc5h0aab-7605-11e8-0048-9anf352a20d helo python

Our hello python article has been created. Copy the read, update, and delete
Python Lambda function handlers into the directory, and update the serveriess.ym1
file. We also need to change the path a little bit, so, instead of createnow, it says
articles. For the read article, we give it a path parameter, which is the ID of my
article as shown here:

functions:
create:
handler: create.handler
events:
- http:
path: articles
method: post
read:
handler: read.handler
events:

- http:
path: articles/{id}
method: get
update:
handler: update.handler
events:

We can perform put operations to update the article and can also perform delete
operations to delete articles:

update:
handler: update.handler
events:
- http:
path: articles
method: put
delete:
handler: delete.handler
events:
- http:
path: articles
method: delete

The rest is the same as before. We also need to add respective function handlers
to get items from the DynamoDB table, return them in response to the update
articles in the DynamoDB table, and delete articles in the DynamoDB table. We
also need to add a path parameter to the event.json file, so that we can test the
read-article function handler, as shown here:

{

"pathParameters": {"article_id": "d4b8d9f0-fdc6-11e6-9cc5-985aeb8c9bcc"},

"body": "{\"article_id\":\"82682c73-fdc7-11e6-8554-985aeb8c9bcc\", \"text\": \"Hello
World\"}"
b

Now deploy the function and test the API using Postman. To test the API, copy
the following endpoint, then open Postman and use the endpoint:

- . : J€ $ sls deploy
Packaging service...

Excluding development dependencies. ..

Uploading CloudFormation file to S3...
Uploading artifacts...

Uploading service .zip file to S3 (14.27 KB)...
Validating template...

Updating Stack...

Checking Stack update progress...

service: pyblog
stage: dev

region: eu-central-1
stack: pyblog-dev
api keys:
None
endpoints:
POST - https://jppje .execute-api.eu-central-1.amazonaws.com/dev/articles
GET - https:. j97nlo7.execute-api.eu-central-1.amazonaws.com/dev/articles/{id}
7nlo7.execute-api.eu-central-1.amazonaws.com/dev/articles
DELETE - ps://jppj97nlo7.execute-api.eu-central-1.amazonaws.com/dev/articles
functions:
create: pyblog-dev-create
read: pyblog-dev-read
update: pyblog-dev-update
delete: pyblog-dev-delete

Open Postman and select the post HTTP method to create a new article. Paste
the endpoint that we copied previously, and add the following JSON file as a
payload to post the request, as shown here, and click Send:

No Enironment
tpspgmioTexe @

POST sl execute-apieu-entrab amazonaus com/dev/arices CE Send v SR

formata © xammelormrencoded @ raw © binary

L {rticle 10", "101ffec-Sced-4767-8087-sabhaaraget], "text's "Hello fron Postnen’)

This will return the articie_id of the article that has been created. Copy that and

perform a get request. This returns the texts that we have just created with our
article Hello from Postman, as shown here:

NoEnronment v 0§
ToTee O hitps/ippSmioTexe @ 4 on
GET v tps./ppiSTnloTexecute-3piaus<entral-L.amazonaws coev/artices 645daca-T6bd-1 1e8-ae2n OFd3edstoh Params e
Authorization ~ Feaders (ode
Type No Auth
oy Cooes Heates (] T et Status 200K Tme: 805 ms
ety Ny =

"article id's "6945daca-T6b3-11ed-aelh-BoFededs o'
}

].'

L ety "hello from Postran”,
j

§

Summary

In this chapter, we learned how to create Lambda functions from blueprints on
the AWS Management Console using Python. Then we used the serverless
framework with Python to create a slightly more complex service that includes
Lambda, API Gateway, and DynamoDB. In the next chapter, we are going to
program AWS Lambda using C#.

Programming AWS Lambda with C#

At the time of working on this chapter, C# is the newest language addition to the
AWS platform. You can now build Lambda functions and serverless applications
using C# and .NET tools. In this chapter, we are going to cover the following
topics:

e Creating C# Lambda functions with .NET Core
e Creating C# serverless projects with .NET Core

Creating C# Lambda functions with
.NETCore

In this section, we are going to create a Lambda function using .NET Core. We
are going to take a look at how to install the AWS Toolkit for Visual Studio.
Then, we are going to try out some features of the AWS Toolkit and we'll use it
to create our first C# Lambda function.

Firstly, we need to download the AWS Toolkit for Visual Studio, so download
and execute the installer, and launch Visual Studio. After you have signed up for
an AWS account, sign in to the AWS Management Console. Click on Services in
the upper left-hand corner and select IAM, which will navigate you to the
Identity and Access Management dashboard:

s« Weleome fodentiy and Access Management e Spotig

ninducton D AWS 1AM €)

AN users Sin-n ink

Dashboard
ook signin aws amazon comconsole (f | Cisonizg = =
(roups :
- 1AM Resources
s s 1 Roes: 23
s Groups: 3 iy Providers: 0
Customer Managed Polces. 12
el i e
Auountsetngs—+ Securty Status oo)
Credenial repor : Addtioral Informat
[\ Acie NEAonyour o ccoun v flanal niormaton
e (A best pracfices
Create ndividual]AM vsers v p
ENCryplon keys 1AM documentation
Use roups o assignpemissios g Wl Ideny Federaton Playaround
. Polcy Simutor
Anply an (AM passiord policy v
Videos, 1AM release hitory and
Rotate your access keys v adtonal resoures

Now, we need to create a special user with permissions to access AWS services
programmatically. This allows us to set up our local development environment in
a way that IDEs' development frameworks can use AWS on our behalf. You
should set up an IAM user to keep your AWS account secure because you can
simply create an IAM user with a set of permissions and, after performing the
exercises using that IAM user, you can later delete it. Therefore, your access
credentials are not prone to the risk of being abused by somebody else if another
person gets access to your identity and access. Here, let's create a special user for

the purpose of this chapter. We are going to give this user access permissions to
use AWS services programmatically. It's always good practice to create an IAM
user with specially tailored permissions. For the purpose of this tutorial, let's
create a user to access AWS services on our behalf; for example, from the
Eclipse IDE or through the serverless framework. After you have performed the
exercise in this tutorial, you can simply delete this IAM user, so you won't run
the risk of accidentally exposing your credentials in a way that somebody else
can use your AWS account on your behalf.

First, we're going to create an IAM group, so click on Groups on the left-hand
side. Create a new group named 1earninggroup and click on Next Step. For
simplicity, give the group administrator access. This is not the best security
guideline, but it's simple and gets us started quickly. You can, and you should,
probably delete this group as soon as you are done with performing these
exercises. Click on Next Step and the group is created.

Now we need to assign the user to the newly created group. Go back to the
dashboard, create a user, and assign the user to the newly created group. Click on
the Add User button and give the user the name 1earningianbda. Also, give the user
programmatic access. This will create an access key ID and a secret access key
for your user, so the command-line interface, serverless framework, SDK or
other development tools that are set up on your local computer can access AWS
services on your behalf. Click on the Next Permissions button.

So far, we have added a user to the group 1earninggroup and now we are going to
create the user. Once our user has been created successfully, it creates an access
key ID and secret access key for your user. Copy this information into a text
editor for now.

Creating an AWS Lambda project

Let's get started by creating a new AWS Lambda project.

1. Click on File | New | Project.

Mew Project ?
b Recent Sort by: | Default - Search (Ctrl+E) P~
= ||[it WS Lambda Project (NET Core] Visualce Type: Visual G2
4 Visual C2 A project for creating a AWS Lambda
[[lir- AWS Lambda Project with Tests (NET Core) Visual C# bifctionsusing:NEL are,
b AWS Samples
4 Visual C++ l[[ﬂ AWS Serverless Application (NET Core) Visual C#
Windows Desktop
General |l[|‘{ AWS Serverless Application with Tests (.MET Core} Visual C#
Test
ANS

4 Other Project Types
Visual Studio Solutions

b Online

Not finding what you are looking for?

Open Visual Studic Installer

Name: AWSLambdal

Location: | C\Users\adminlsourcelrepos ~| | Browse..

Solution name: AWSLambdal Create directory for solution
Framework: D Add to Source Control

‘7 oK | Cancel
0 To install the AWS Toolkit, you should see the preceding options on the left-hand side,

including AWS Lambda, and there are some sample projects with sample code for your
reference.

2. Let's get started with a very simple AWS Lambda Project using the
.NETCore framework. Leave the defaults as they are, as awsLambda1, and click
OK.

3. Select one of the blueprints. Let's get started with a really simple empty
function blueprint. Click Finish.

Our AWS Lambda project has been created and it will show up in our Solution
Explorer. Now let's take a look at the function handler:

lindongs # X
1. il I OB e A \
MSHHIJLIlMT[uwAppHsml il ":':AWS‘.:!uu:d\-uur.lr,w 1 el Lk e :‘ a ’@H@‘ fa
LY Flistng ysten; f
A v
] nﬁﬁ'ftnm (ollartions aneriz, i st e] !
3 |teing bysten, dog [ﬂl’artagmernrﬁiailﬁd O e X
b [Q}"«‘HIILT-‘;I'M.; TRENE
g ’ i) Sion b)
D |vsing ez, antda, (o 40 A
; b i Poperis
8] hsambly attribute o snable the Lante tunccion's 0N dnout zo be canverted inte 2 JMET class, b H R
3 Junbly: anteerial oo o (Amaron. sl Sevial ol on, Tom, TSl)] lﬂwmﬂﬁmwmmmﬂ
il o it
1 Frmeae M5t bif] ot
1| if) et
B0 mblic class Tunction
I {
i
|
b F] dsumary
i I/} & sinple furction thet takes & string end does & Tolpper
i] {fsumary
I 1] <aaran ==:ma-“inpu 3 param
i I 4garon name=" ot e
] 1 ésgmypnssd lratyens .
ol B --“‘f’ i | ERY i (e
0o public string FunctiorHandler(string dnpus, Tlaabdalontas: contet)
: [
1] Foprs
i return dnput? olppen): :
b ! .
5 | B0
1)
i '
0% -
' |

So, from the preceding screenshot, the structure of the Lambda function looks
similar to the examples that we have seen before for Java and other
programming languages. We have our function handler, and the function handler
takes two arguments: the input, which in this case is a string, and the context
object, which gives us information on the runtime context of our Lambda
function.

|public string FunctionHandler(string input, ILambdaContext context)

{
b

return input?.ToUpper();

This Lambda function simply takes the input, transforms it into uppercase
characters, and returns them. Also, make sure that you are in the right region.
Here, we are deploying our Lambda function into the EU Central region and
Frankfurt. Give our function the name csrunction, and click Next, which will lead
you to select some further configurations for our Lambda function, such as an
IAM role. For example, if you want to access other AWS services from within
your Lambda function, you need to select an IAM role that gives your Lambda
function permission to do that. We can also configure the amount of memory.
For now, select the smallest amount. We also select the timeout, which is the
time after which our function will time out, as shown here:

Upload to AWS Lambda

s

Canticnra ad;
LUTTHYUTE qUdiL

Advanced Function Details
" Aditinnal ‘T|"] VAL fi""""'

|
Uial Sell your Turctorn.

g ALy

Permissions

Select an [AM role to provide AWS credentials to our Lambda function allowing access to AWS Services like 53
Role Name: | Existing role: lambda_basic_execution

Execution

Debugging and Error Handling
Memory (MB): 128

v

DLQ Resource: <no dead letter queue>

Timeout (Secs): (1-300)

|| Enable active tracing (AWS X-Ray) ~ Learn More.

Environment

VPC

If your function accasses resources in a VPG, select kM5 ey Call el

the [ist of subnets and security group 1Ds (these Vaiable villg

must belong to the same VPC).

VPC Subnets: i
Security Groups:

Add..
Close Back Next Upload

For the IAM role, we simply choose the Lambda basic execution role, as shown

in the previous screenshot, which has no special permissions. Click on Upload to
upload the Lambda function.

Tincton:(Tincion ¥ X {600

b Uotatvevsae £ Rt

Funeton: CSFunction

el S Laminat ALt FuncleFunc o e

‘ Ll Mo 2B TAES6 AN

Ucsenctor:

 cltion o

(e S 218380t R vt CRSSRARED e s el

Test Funcfion
Configuraton
Fent Sources

AV -y

Lgs

Songle o)i
Crample et

Feloit mond

Hesponge | SNty i

AL CEHORLY

el

Lagoutpy:

START oo 97T A A5 Voo § 7657
EAD ot et 57 o -4t sl
RERCRT et b7t 1o-S00E-T9P220cd. Coroion EA549my

Bt D 700w Mooy S JBME oMy e 948

0006549 p
Seech St Dl ()
o, ooy (praacy
4135 AUBLamt
b et
b M s
H bl el
i [intons
b ifl

i3 Relnend

Scliton o eSO

2

As you can see from the previous screenshot, we have created our first Lambda
function with C#. If we give it some input and invoke it, we get our uppercase
string as return. Head to the AWS Management Console and have a look at our
Lambda function there. On the AWS Lambda dashboard, you can see that four
functions have been created: for getting all blogs, for getting a single blog, for
adding a blog, and for removing a blog. This is as follows:

Function name v Description Runtime v Codesize v LastModified v
c-serverless-stack-AddBlog- 16BUIMMEDDASS Function to get add a blog Ch(NET Core 1.0 5778kB In5 hours
cs-serverless-stack-GetBlogs-MLXIN1Z5SATE Function to get a st of blogs i (NET Core 1) 57178kB in5 hours
cs-serverless-stack-GetBlog-FORJYMRGK2ZX Function to get a singl blog C# (NET Core 1.0 5778kB In5 hours
cs-serverless-Stack-RemoveBlog-ASTKIJKHOT Function to remove a blog CH(NET Core 10) 3718k In5 hours

Head over to the DynamoDB dashboard. A new table, CsBlogTable, has been
created. It has a single hash ID or primary partition key, with name Id and type
string;:

CsBlogTable Close

tems ~ Metrics ~ Alarms

Qverview

Recent alerts

No CloudWatch alarms have been friggered for this table.

Stream details

Stream enabled

Capacity

Indexes ~ Global Tables ~ Backups ~ Triggers

No

Viewtype -
Latest stream ARN -

Manage Stream

Table details

Table name

Primary partition key

Primary sort key

Point-in-{ime recovery
Encryption

Time to live attribute

Table status

Creation date

Provisioned read capacity units
Provisioned write capacity units

CsBlogTable
Id (String)

DISABLED Enable

DISABLED

DISABLED Manage TTL

Active

June 26, 2018 at 1:31:12 PM UTC+5:30
1 (Auto Scaling Disabled)

1 (Auto Scaling Disabled)

Last decrease time -
Lastincrease time -

Let's try out our API by invoking it with Postman. Go back to Visual Studio and
log into the AWS Management Console. We've deployed all our functions in the

0 &0 @

Access control

Tags

Frankfurt region. As you can see here, we have a new addition, the CSFunction:

ii

HH Y
Function name v Description v Runtime v Code size ~ Last Modified

CSF[@clion C# 209.8 kB 2 minutes ago

You can take a look at it by clicking on Monitoring. As you can see in the
following screenshot, we have just had an error and we also had one successful
invocation:

CloudWatch metrics at a glance (last 24 hours) View logs in CloudWatch

Invocations 5] Duration = @ Errors (5]

If you click on CloudWatch, you can also view the logs there that you have just
seen in your Visual Studio log console. Next, we are going to create a serverless
application with C# and the .NET Core framework.

Creating C# Serverless Project with
NET Core

In the previous section, we used Visual Studio and the AWS Toolkit to create our
first AWS Lambda function with C#. Now we will create a more complex
serverless project that contains Lambda functions and the API Gateway. We are
going to use the AWS Toolkit and Visual Studio to create a serverless project.
We will also explore the generated source code and deploy and test the project.

1. Go to Visual Studio 2015 and create a new serverless project. Select File |
New | Project.

2. Select AWS Serverless Application and click OK.

3. We are creating a little bit more complex application, so select the Blog API
using DynamoDB.

4. Our serverless project has been created. There are two files that have been
generated for us, slog.cs file and runctions.cs file, as shown here:

Solution Explorer > 1 x
@ o-5F|p -
Search Solution Explorer (Ctrl+;) P~

{7a] Solution "AWSServerless1’ (1 project)

4 30 AWSServerless1

b # Properties
b =@ References (Restoring..)
Q aws-lambda-tools-defaultsjson
c* Blog.cs
C* Functions.cs
g]' project.jsan
B Readmemd
m serverless.template

In the runctions.cs file, we find the function handlers that are used to implement

the business logic for our Blog API. First, there is a constructor that sets up the
context for our DynamoDB:

namespace AwWSServerlessl

{

public class Functions

{
const string TABLENAME_ENVIRONMENT_VARIABLE_LOOKUP = "BlogTable";

public const string ID_QUERY_STRING_NAME = " Id";
IDynamoDBContext DDBContext {get; set; }

public Functions()

{

var tablename =

System.Environment.GetEnvironmentVariable (TABLENAME_ENVIRONMENT_VARIABLE_LOOKUP);
if(!string.IsNullOrEmpty(tableName))
{
AWSConfigDynamoDB.COntext.TypeMappings[typeof(Blog)] = new
Amazon.Util.TypeMapping(typeof(BlogTable))
}
var config = new DynamoDBContextConfig {COnversion =
DynamoDBEntryConversion.V2};

For example, in the previous screenshot, we retrieve the table name from an
environment variable and set up the context for our DynamoDB client.
Following this, you will see the main business functions, such as get blogs. You
can also retrieve a blog identified by its blog ID. We read the blog ID from the
path parameters:

public async Task<APIGatewayProxyResponse> GetBlogAsync(APIGatewayProxyRequest request,
ILambdaContext)
{
string blogId = null;
if(request.PathParameters != null &&
request.PathParameters.ContainsKey(ID_QUERY_STRING_NAME))
blogId = request.PathParameters[ID_QUERY-STRING_NAME];
else if(request.QueryStringParameters[ID-QUERY-STRING_NAME]);

Further to this, we use the DynamoDB client to retrieve the blog from our
DynamoDB table:

context.Logger.LogLine($"Getting blog (blogId}");
var blog = await DDBContext.LoadAsync<Blog>(blogId);
context.Logger.LogLine($"Found blog: {blog!= null}");

if(blog == null)

{
return new APIGatewayProxyResponse
{
StatusCode = (int)HttpStatusCode.NotFound
3

}

In the following screenshot, we are preparing an API Gateway proxy response,
so we set the HTTP status code, body, and headers in our code instead of setting
these in our AWS Management Console. This is pretty similar to the approach in
the serverless framework and Lambda proxy integration.

var response = new APIGatewayProxyResponse

StatusCode = (int)HttpStatusCode.OK,

Body = JsonConvert.SerializeObject(blog),

Headers = new Dictionary<string, string>{{"Content-Type", "application/json"}}
3

return response;

In addition, we have a function that adds the blog post and a function for
removing a blog post.

In our Solution Explorer, we can see the serverless.template, which contains the
serverless application model, as shown here:

{

"AWSTemplateFormatVersion": "2010-09-09",

"Transform": "AWS::Serverless-2016-10-31",

"Description": "AWS Serverless API that exposes the add, remove and get operations
for a blogging

platform"

"Parameters": {

"ShouldCreateTable"

This is basically an extension of the CloudFormation syntax that we use it to
create AWS resources. For example, we specify the Lambda functions to get
blogs, get a single blog identified by its ID, add blogs, and remove blogs. We
also specify the blog table that is being created in DynamoDB.

Let's try it out. Right-click on the AWS Serverless1 in the Solution Explorer, and
Publish to AWS Lambda; we can use the same account settings as before, as
shown in the following:

Publish AWS Serverless Application

aWS Publish AWS Serverless Application

Account profile to use: default v Region: ™ [y (Frankfurt) ~

Configuration: Release Framework; nhetcoreappl.0 -
Stack Name: cs-serverless-stack -

53 Bucket: cs-bucket-15653788277319u2 .

[] save settings to aws-lambda-tools-defaults json for future deployments.

Select the stack name and create a new bucket to which our CloudFormation
code will be uploaded. Click Next.

We then need to enter the environment variables that will be used in our function
code, as you have seen before. We also need to enter a table name for the blog
table that is being created in DynamoDB. We call it csg1ogTable, as shown here:

Publish AWS Serverless Application

aWS Edit Template Parameters

-'—‘*"‘f.’-.' arameters assoclated

[T Parameters or make CUstomiz

ormation —1||"1— fol

I may review and proceed with

BlogTableName ‘EsB!ogTab!e

Name of DynamaoDB table used to store the blog post. If left blank a new table will be created.

ReadCapacity ‘1

Read capacity for the DynamaDB blog table.

ShouldCreateTable
If true then the DynamoDB hiogglng table will be created with the CloudFormation stack.

WriteCapacity ‘1

Write capacity for the DynamoDB blog table,

(Close

Back

Next

Reset to Default

Publish

The minimum settings for reading capacity and write capacity for DynamoDB

are 1 and 1. Once that is done, click on Publish.

You will be able to see the current Status of the CloudFormation stack that will
create our resources, which should end with create_completed.

If there was an error in your setup, you should get some info back on your console. Or you
can go to the AWS Management Console dashboard, then head over to the CloudFormation

dashboard, and see what has gone wrong. You can also delete your CloudFormations stack
and all the resources that have been created here by going to your AWS Management Console
and simply deleting the stack.

You can also go to the AWS Management dashboard and take a look what has
been created.

Just copy the URL to our API and open Postman.

Summary

We have explored programming Lambda using Java, Python, and C#. In the case
of Java, we used Eclipse with the AWS Toolkit plugin to create simple Lambda
functions, as well as more complex serverless projects that include multiple
Lambda functions, the API Gateway service, and DynamoDB. Similarly, in the
case of C#, we used Visual Studio with the AWS Toolkit to create simple
Lambda functions, as well as a more complex serverless project. For Python, we
used the serverless framework.

Other Books You May Enjoy

If yo

njoyed this book, you may be interested in these other books by Packt:

Mastering
AWS Lambda

Mastering AWS Lambda
Yohan Wadia, Udita Gupta

ISBN: 978-1-78646-769-0

Understand the hype, significance, and business benefits of Serverless
computing and applications

Plunge into the Serverless world of AWS Lambda and master its core
components and how it works

Find out how to effectively and efficiently design, develop, and test
Lambda functions using Node.js, along with some keen coding insights and
best practices

Explore best practices to effectively monitor and troubleshoot Serverless
applications using AWS CloudWatch and other third-party services in the
form of Datadog and Loggly

Quickly design and develop Serverless applications by leveraging AWS
Lambda, DynamoDB, and API Gateway using the Serverless Application
Framework (SAF) and other AWS services such as Step Functions
Explore a rich variety of real-world Serverless use cases with Lambda and
see how you can apply it to your environments

https://www.packtpub.com/virtualization-and-cloud/mastering-aws-lambda

Building Serverless
Architectures

Building Serverless Architectures
Cagatay Gurturk

ISBN: 978-1-78712-919-1

Learn to form microservices from bigger Softwares

Orchestrate and scale microservices

Design and set up the data flow between cloud services and custom
business logic

Get to grips with cloud provider’s APIs, limitations, and known issues
Migrate existing Java applications to a serverless architecture

Acquire deployment strategies

Build a highly available and scalable data persistence layer

Unravel cost optimization techniques

https://www.packtpub.com/application-development/building-serverless-architectures

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	AWS Lambda Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	Packt is searching for authors like you

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Bibliography

	Getting Started with AWS
	Installation and setup guide
	Installing the Serverless framework

	Introduction to AWS
	Cloud service pricing
	Pricing example

	AWS Management Console
	Regions

	AWS Lambda
	AWS API Gateway
	Summary

	Exploring the Serverless Framework
	The Serverless framework
	Creating a serverless project
	Programming a Lambda function with Node.js
	Testing and debugging Lambda functions
	Testing the API using Postman
	Testing and debugging via the AWS Management Console

	Summary

	Building a Serverless Application
	Building a stateless serverless web application backend
	Changing the file structure
	Creating more functions

	Creating a stateful serverless backend with DynamoDB
	Creating a web client
	Deploying a serverless frontend on CloudFront
	Summary

	Programming AWS Lambda with Java
	Deploying and Testing AWS Lambda Functions
	Lambda Function with S3 Event Input
	Creating a Simple Serverless Java Project

	Summary

	Programming AWS Lambda with Python
	Creating a python lambda function
	Using the Serverless Framework with Python
	Building a Serverless backend with Python
	Summary

	Programming AWS Lambda with C#
	Creating C# Lambda functions with .NETCore
	Creating an AWS Lambda project

	Creating C# Serverless Project with .NET Core
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

